61 research outputs found

    Energy Consumption Management of Commercial Buildings by Optimizing the Angle of Solar Panels

    Get PDF
    In recent times, limitations and adverse effects of fossil fuels have significantly attracted researchers' attention to green fuels worldwide, especially in developed nations. As a way of assessing this actualization of biorefineries establishment in developing nations, this report surveys the works done by various researches towards this great course in terms of promoting and gaining the attention of both government and private investors about the technical and economic feasibility of embracing the use of biofuels, a case of bioethanol in Nigeria. Different classes of feedstocks were reviewed for the laboratory-scale, process scale-up, pilot plant, and techno-economic studies regarding ascertaining the technical and economic feasibility of local setup of a functional biorefinery in Nigeria, which would be beneficial environmentally and economically. The literature survey unveiled that the Bioethanol yield obtained from sugarcane-juice (72.7 %), banana-stems (84.0 %), and cassava (92.0 %) were found to be of highest potential amongst other sugar-based, lignocellulosic, and starch- based feedstock, respectively. The survey further unveils that the volume of process scale-up and economic feasibility studies does not correlate well with the laboratory-scale studies. The bulk of the research works on bioethanol has given preferential attention to laboratory studies. Only a few studies have looked into the commercialization (i.e., scale-up) of the laboratory findings and the economic implications. Presently, only sugarcane and a few cassavas are reported in the literature so far. It is, therefore, necessary for further studies to give attention to the investigation of the commercializing locally developed technologies and the exploration of their economic benefit

    BIM-based optimum design and energy performance assessment of residential buildings

    Get PDF
    Buildings are the largest energy consumer in the world, according to the United Nations Environment Program. Most of the energy will be used during the building life-cycle stage. Thus, achieving sustainable development at the national level requires minimizing the impact of buildings on the environment by reducing energy consumption. Using Building Information Modeling technology in energy performance assessment could be significantly reduced time and cost. This study aimed to optimize energy consumption in a residential building using BIM technology. The main focus of this study was to evaluate energy performance through the simultaneous evaluation of building components using BIM technology with a conceptual design approach, comparison, and reduction of energy consumption. To investigate different design ideas were created several conceptual masses in Autodesk Revit software with a top-down design approach. After reviewing the conceptual masses, the main building form was chosen for modeling. Then, building energy consumption was computed using related tools in this field, based on the type of materials, equipment, and project location. Finally, the most optimal mode was selected by examining different energy consumption forms. The results of parametric studies on alternative schemes of energy optimization showed that 58.46% of energy cost savings could be achieved compared to the initial model of the building on a 30-year time horizon

    Energy consumption management of commercial buildings by optimizing the angle of solar panels

    Get PDF
    One of the main reasons of environmental pollution is energy consumption in buildings. Today, the use of renewable energy sources is increasing dramatically. Among these sources, solar energy has favorable costs for various applications. This study examined a commercial building in a hot and humid climate. The findings showed that choosing the optimal angle of solar panels with the goal of optimized energy consumption would yield reduced costs and less environmental pollutants with the least cost and maximum energy absorption. In this study, to calculate the energy requirements of the building, DesignBuilder software was used. To study the solar angles and estimate the energy produced by the solar panels, Polysun software was used after simulating the building energy. Energy simulation results showed that the whole building energy consumption was 26604 kWh/year. Finally, the evaluation results of solar panels showed that the energy produced by photovoltaic modules at an optimal angle of 31° would be equal to 26978 kWh/year, which is more than the energy required by the building. This system can prevent 14471 kg of carbon dioxide emissions annually. Sustainable energy criteria showed that for the studied building, photovoltaic modules could be used in energy production to reach a zero-energy system connected to the grid with an annual energy balance

    Effective energy consumption parameters in residential buildings using Building Information Modeling

    Get PDF
    Building information modeling can help in predicting the energy efficiency in future based on dynamic patterns obtained by visualization of data. The aim of this study was to investigate the effective parameters of energy consumption using BIM technology which can evaluate the buildings energy performance. First, three forms of general states in the building were modeled to evaluate the proposed designs in Autodesk Revit Software. Then, the main building form for energy modeling and analysis was selected. Autodesk Revit 2020 software was also used to obtain the results of climate data analysis and building energy consumption index. Finally, the most optimal mode was selected by examining different energy consumption modes. The results showed that the use of building information modeling technology in adjusting the parameters affecting energy consumption can save energy cost up to 58.23% in block D. Energy cost savings for block C and the western lobby were obtained as 51.03% and 43.05%, respectively. Based on energy use intensity, energy cost savings for blocks C, D, and the western lobby were estimated as 16.67%, 16.30%, and 11%, respectively. The results of parametric studies on alternative schemes of energy use intensity optimization showed that 16.30% savings could be achieved by the base building model in a 30-year time horizon. Therefore, it was concluded that optimization of energy consumption would reduce the environmental pollutants emission and contribute to preservation and sustainability of the environment

    Building energy management using building information modeling: Evaluation of building components and construction materials

    Get PDF
    Traditionally, building energy model is created in isolation from the architectural building information model and energy analyses have relied on a single analysis tool. The building energy model can be generated more quickly by leveraging existing data from the BIM. The impacts of energy consumption are significant in the building usage phase, which can last several decades. Due to the large share of the final energy consumption in the building sector, accurate analysis of thermal and cooling loads of a building and the efforts to reduce energy losses represent an effective way to reduce energy consumption. Therefore, it is essential to analyze the building energy performance in the design phase, which is when critical decisions are made. This study aims to investigate the impact of the building components and construction materials on building energy efficiency using Building Information Modeling (BIM) technology in a mild climate zone. After reviewing the proposed designs, the main building form was chosen for energy modeling and analysis. Then, building energy consumption analysis was performed based on the basic parameters of the building energy model. Eventually, the most optimal mode was selected by examining different energy consumption forms. This study showed that the building HVAC system always had the largest share of energy consumption. Finally, the results of parametric studies on alternative schemes of energy use intensity optimization showed that 22.59 % savings could be achieved as compared to the base building model in a 30-year time horizon

    Feasibility of using green roof and shading device by adopting the total energy consumption approach: A case study in Tehran

    Full text link
    [EN] Greenhouse gases are responsible for climate change, and the building sector is one of the main areas to reduce carbon dioxide emissions. In terms of air pollution, Tehran is one of the top cities in the ranking (Heger and Sarraf 2018). Therefore, paying more attention to this issue is absolutely essential. GB (green building) is one of the parameters to achieve a sustainable city. This paper analyses GR (green roof) and SD (shading device), which are two crucial parts of a GB from the EC (energy consumption) approach in a residential building in Tehran city. The heating and cooling system in the building is based on natural gas and electricity. This paper compares energy consumption, including ELC (electricity consumption) and GC (gas consumption) before and after GR and SD to find out whether or not they are suitable for this building and the current case study.Cárcel-Carrasco, J.; Palmero Iglesias, LM.; Amani, N.; Rafat Gigasari, A. (2021). Feasibility of using green roof and shading device by adopting the total energy consumption approach: A case study in Tehran. Área de Innovación y Desarrollo,S.L. 153-159. http://hdl.handle.net/10251/19066815315

    Energy analysis for construction of a zero-energy residential building using thermal simulation in Iran

    Get PDF
    Purpose The purpose of this paper is to examine the feasibility and design of zero-energy buildings (ZEBs) in cold and semi-arid climates. In this study, to maximize the use of renewable energy, energy consumption is diminished using passive solar architecture systems and techniques. Design/methodology/approach The case study is a residential building with a floor area of 100 m2 and four inhabitants in the cold and semi-arid climate, northeast of Iran. For thermal simulation, the climate data such as air temperature, sunshine hours, wind, precipitation and hourly sunlight, are provided from the meteorological station and weather databases of the region. DesignBuilder software is applied for simulation and dynamic analysis of the building, as well as PVsyst software to design and evaluate renewable energy performance. Findings The simulation results show a 30% decrease in annual energy consumption of the building by complying with the principles of passive design (optimal selection of direction, Trombe wall, shade, proper insulation selection) from 25,443 kWh to 17,767 kWh. Then, the solar energy photovoltaic (PV) system is designed using PVsyst software, taking into account the annual energy requirement and the system’s annual energy yield is estimated to be 26,291 kWh. Originality/value The adaptive comparison of the values obtained from the energy analysis indicated that constructing a ZEB is feasible in cold and semi-arid conditions and is considered an effective step to achieve sustainable and environmentally friendly construction

    The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017 : a systematic analysis for the Global Burden of Disease study 2017

    Get PDF
    Background: Stomach cancer is a major health problem in many countries. Understanding the current burden of stomach cancer and the differential trends across various locations is essential for formulating effective preventive strategies. We report on the incidence, mortality, and disability-adjusted life-years (DALYs) due to stomach cancer in 195 countries and territories from 21 regions between 1990 and 2017. Methods: Estimates from GBD 2017 were used to analyse the incidence, mortality, and DALYs due to stomach cancer at the global, regional, and national levels. The rates were standardised to the GBD world population and reported per 100 000 population as age-standardised incidence rates, age-standardised death rates, and age-standardised DALY rates. All estimates were generated with 95% uncertainty intervals (UIs). Findings: In 2017, more than 1·22 million (95% UI 1·19–1·25) incident cases of stomach cancer occurred worldwide, and nearly 865 000 people (848 000–885 000) died of stomach cancer, contributing to 19·1 million (18·7–19·6) DALYs. The highest age-standardised incidence rates in 2017 were seen in the high-income Asia Pacific (29·5, 28·2–31·0 per 100 000 population) and east Asia (28·6, 27·3–30·0 per 100 000 population) regions, with nearly half of the global incident cases occurring in China. Compared with 1990, in 2017 more than 356 000 more incident cases of stomach cancer were estimated, leading to nearly 96 000 more deaths. Despite the increase in absolute numbers, the worldwide age-standardised rates of stomach cancer (incidence, deaths, and DALYs) have declined since 1990. The drop in the disease burden was associated with improved Socio-demographic Index. Globally, 38·2% (21·1–57·8) of the age-standardised DALYs were attributable to high-sodium diet in both sexes combined, and 24·5% (20·0–28·9) of the age-standardised DALYs were attributable to smoking in males. Interpretation: Our findings provide insight into the changing burden of stomach cancer, which is useful in planning local strategies and monitoring their progress. To this end, specific local strategies should be tailored to each country's risk factor profile. Beyond the current decline in age-standardised incidence and death rates, a decrease in the absolute number of cases and deaths will be possible if the burden in east Asia, where currently almost half of the incident cases and deaths occur, is further reduced. Funding: Bill & Melinda Gates Foundation

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
    corecore