20,151 research outputs found

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio

    Uniform approximation for the overlap caustic of a quantum state with its translations

    Full text link
    The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.Comment: 14 pages, 9 figure

    Replica-symmetric solutions of a dilute Ising ferromagnet in a random field

    Full text link
    We use the replica method in order to obtain an expression for the variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions. In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the paramagnetic solution is fully stable in a sufficiently large random field

    Spin-glass behaviour on random lattices

    Get PDF
    The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction ww of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w=1/2w=1/2, correponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w<1/2w<1/2) from a region with spin-glass, ferromagnetic, mixed, and paramagnetic phases (w>1/2w>1/2)

    Husimi-Wigner representation of chaotic eigenstates

    Full text link
    Just as a coherent state may be considered as a quantum point, its restriction to a factor space of the full Hilbert space can be interpreted as a quantum plane. The overlap of such a factor coherent state with a full pure state is akin to a quantum section. It defines a reduced pure state in the cofactor Hilbert space. The collection of all the Wigner functions corresponding to a full set of parallel quantum sections defines the Husimi-Wigner reresentation. It occupies an intermediate ground between drastic suppression of nonclassical features, characteristic of Husimi functions, and the daunting complexity of higher dimensional Wigner functions. After analysing these features for simpler states, we exploit this new representation as a probe of numerically computed eigenstates of chaotic Hamiltonians. The individual two-dimensional Wigner functions resemble those of semiclassically quantized states, but the regular ring pattern is broken by dislocations.Comment: 21 pages, 7 figures (6 color figures), submitted to Proc. R. Soc.
    corecore