20,151 research outputs found
Physical properties of the Schur complement of local covariance matrices
General properties of global covariance matrices representing bipartite
Gaussian states can be decomposed into properties of local covariance matrices
and their Schur complements. We demonstrate that given a bipartite Gaussian
state described by a covariance matrix \textbf{V}, the
Schur complement of a local covariance submatrix of it can be
interpreted as a new covariance matrix representing a Gaussian operator of
party 1 conditioned to local parity measurements on party 2. The connection
with a partial parity measurement over a bipartite quantum state and the
determination of the reduced Wigner function is given and an operational
process of parity measurement is developed. Generalization of this procedure to
a -partite Gaussian state is given and it is demonstrated that the
system state conditioned to a partial parity projection is given by a
covariance matrix such as its block elements are Schur complements
of special local matrices.Comment: 10 pages. Replaced with final published versio
Uniform approximation for the overlap caustic of a quantum state with its translations
The semiclassical Wigner function for a Bohr-quantized energy eigenstate is
known to have a caustic along the corresponding classical closed phase space
curve in the case of a single degree of freedom. Its Fourier transform, the
semiclassical chord function, also has a caustic along the conjugate curve
defined as the locus of diameters, i.e. the maximal chords of the original
curve. If the latter is convex, so is its conjugate, resulting in a simple fold
caustic. The uniform approximation through this caustic, that is here derived,
describes the transition undergone by the overlap of the state with its
translation, from an oscillatory regime for small chords, to evanescent
overlaps, rising to a maximum near the caustic. The diameter-caustic for the
Wigner function is also treated.Comment: 14 pages, 9 figure
Replica-symmetric solutions of a dilute Ising ferromagnet in a random field
We use the replica method in order to obtain an expression for the
variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the
presence of random external fields. Introducing a global order parameter, in
the replica-symmetric context, the problem is reduced to the analysis of the
solutions of a nonlinear integral equation. At zero temperature, and under some
restrictions on the form of the random fields, we are able to perform a
detailed analysis of stability of the replica-symmetric solutions. In contrast
to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a
uniform field, the paramagnetic solution is fully stable in a sufficiently
large random field
Spin-glass behaviour on random lattices
The ground-state phase diagram of an Ising spin-glass model on a random graph
with an arbitrary fraction of ferromagnetic interactions is analysed in the
presence of an external field. Using the replica method, and performing an
analysis of stability of the replica-symmetric solution, it is shown that
, correponding to an unbiased spin glass, is a singular point in the
phase diagram, separating a region with a spin-glass phase () from a
region with spin-glass, ferromagnetic, mixed, and paramagnetic phases
()
Husimi-Wigner representation of chaotic eigenstates
Just as a coherent state may be considered as a quantum point, its
restriction to a factor space of the full Hilbert space can be interpreted as a
quantum plane. The overlap of such a factor coherent state with a full pure
state is akin to a quantum section. It defines a reduced pure state in the
cofactor Hilbert space. The collection of all the Wigner functions
corresponding to a full set of parallel quantum sections defines the
Husimi-Wigner reresentation. It occupies an intermediate ground between drastic
suppression of nonclassical features, characteristic of Husimi functions, and
the daunting complexity of higher dimensional Wigner functions. After analysing
these features for simpler states, we exploit this new representation as a
probe of numerically computed eigenstates of chaotic Hamiltonians. The
individual two-dimensional Wigner functions resemble those of semiclassically
quantized states, but the regular ring pattern is broken by dislocations.Comment: 21 pages, 7 figures (6 color figures), submitted to Proc. R. Soc.
- …