6 research outputs found

    Obstetric Outcomes in Women with Rheumatic Disease and COVID-19 in the Context of Vaccination Status

    Get PDF
    OBJECTIVE: To describe obstetric outcomes based on COVID-19 vaccination status, in women with rheumatic and musculoskeletal diseases (RMDs) who developed COVID-19 during pregnancy. METHODS: Data regarding pregnant women entered into the COVID-19 Global Rheumatology Alliance registry from 24 March 2020-25 February 2022 were analysed. Obstetric outcomes were stratified by number of COVID-19 vaccine doses received prior to COVID-19 infection in pregnancy. Descriptive differences between groups were tested using the chi -square or Fisher's exact test. RESULTS: There were 73 pregnancies in 73 women with RMD and COVID-19. Overall, 24.7% (18) of pregnancies were ongoing, while of the 55 completed pregnancies 90.9% (50) of pregnancies resulted in livebirths. At the time of COVID-19 diagnosis, 60.3% (n = 44) of women were unvaccinated, 4.1% (n = 3) had received one vaccine dose while 35.6% (n = 26) had two or more doses. Although 83.6% (n = 61) of women required no treatment for COVID-19, 20.5% (n = 15) required hospital admission. COVID-19 resulted in delivery in 6.8% (n = 3) of unvaccinated women and 3.8% (n = 1) of fully vaccinated women. There was a greater number of preterm births (PTB) in unvaccinated women compared with fully vaccinated 29.5% (n = 13) vs 18.2%(n = 2). CONCLUSION: In this descriptive study, unvaccinated pregnant women with RMD and COVID-19 had a greater number of PTB compared with those fully vaccinated against COVID-19. Additionally, the need for COVID-19 pharmacological treatment was uncommon in pregnant women with RMD regardless of vaccination status. These results support active promotion of COVID-19 vaccination in women with RMD who are pregnant or planning a pregnancy

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin

    Environmental and societal factors associated with COVID-19-related death in people with rheumatic disease: an observational study

    No full text
    Published by Elsevier Ltd.Background: Differences in the distribution of individual-level clinical risk factors across regions do not fully explain the observed global disparities in COVID-19 outcomes. We aimed to investigate the associations between environmental and societal factors and country-level variations in mortality attributed to COVID-19 among people with rheumatic disease globally. Methods: In this observational study, we derived individual-level data on adults (aged 18-99 years) with rheumatic disease and a confirmed status of their highest COVID-19 severity level from the COVID-19 Global Rheumatology Alliance (GRA) registry, collected between March 12, 2020, and Aug 27, 2021. Environmental and societal factors were obtained from publicly available sources. The primary endpoint was mortality attributed to COVID-19. We used a multivariable logistic regression to evaluate independent associations between environmental and societal factors and death, after controlling for individual-level risk factors. We used a series of nested mixed-effects models to establish whether environmental and societal factors sufficiently explained country-level variations in death. Findings: 14 044 patients from 23 countries were included in the analyses. 10 178 (72·5%) individuals were female and 3866 (27·5%) were male, with a mean age of 54·4 years (SD 15·6). Air pollution (odds ratio 1·10 per 10 μg/m3 [95% CI 1·01-1·17]; p=0·0105), proportion of the population aged 65 years or older (1·19 per 1% increase [1·10-1·30]; p<0·0001), and population mobility (1·03 per 1% increase in number of visits to grocery and pharmacy stores [1·02-1·05]; p<0·0001 and 1·02 per 1% increase in number of visits to workplaces [1·00-1·03]; p=0·032) were independently associated with higher odds of mortality. Number of hospital beds (0·94 per 1-unit increase per 1000 people [0·88-1·00]; p=0·046), human development index (0·65 per 0·1-unit increase [0·44-0·96]; p=0·032), government response stringency (0·83 per 10-unit increase in containment index [0·74-0·93]; p=0·0018), as well as follow-up time (0·78 per month [0·69-0·88]; p<0·0001) were independently associated with lower odds of mortality. These factors sufficiently explained country-level variations in death attributable to COVID-19 (intraclass correlation coefficient 1·2% [0·1-9·5]; p=0·14). Interpretation: Our findings highlight the importance of environmental and societal factors as potential explanations of the observed regional disparities in COVID-19 outcomes among people with rheumatic disease and lay foundation for a new research agenda to address these disparities.MAG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534 [JY]). KDW is supported by the Department of Veterans Affairs and the Rheumatology Research Foundation Scientist Development award. JAS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253, and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R. Bruce and Joan M. Mickey Research Scholar Fund. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). AD-G is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. RH was supported by the Justus-Liebig University Giessen Clinician Scientist Program in Biomedical Research to work on this registry. JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155).info:eu-repo/semantics/publishedVersio
    corecore