105 research outputs found

    Spotlight on CYP4B1

    Get PDF
    The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy

    Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C9 and HLA-B Genotype and Phenytoin Dosing

    Get PDF
    Phenytoin is a widely used antiepileptic drug with a narrow therapeutic index and large inter-patient variability partly due to genetic variations in CYP2C9. Furthermore, the variant allele HLA-B*15:02 is associated with an increased risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in response to phenytoin treatment. We summarize evidence from the published literature supporting these associations and provide recommendations for the use of phenytoin based on CYP2C9 and/or HLA-B genotype (also available on PharmGKB: www.pharmgkb.org)

    Novel CYP2C9 Promoter Variants and Assessment of Their Impact on Gene Expression □ S

    Get PDF
    ABSTRACT There are a considerable number of reports identifying and characterizing genetic variants within the CYP2C9 coding region. Much less is known about polymorphic promoter sequences that also might contribute to interindividual differences in CYP2C9 expression. To address this problem, approximately 10,000 base pairs of CYP2C9 upstream information were resequenced using 24 DNA samples from the Coriell Polymorphism Discovery Resource. Thirty-one single-nucleotide polymorphisms (SNPs) were identified; nine SNPs were novel, whereas 22 were reported previously. Using both sequencing and multiplex single-base extension, individual SNP frequencies were determined in 193 DNA samples obtained from unrelated, selfreported Hispanic Americans of Mexican descent, and they were compared with similar data obtained from a non-Latino white cohort. Significant interethnic differences were observed in several SNP frequencies, some of which seemed unique to the Hispanic population. Analysis using PHASE 2.1 inferred nine common (Ͼ1%) variant haplotypes, two of which included the g.3608CϾT (R144C) CYP2C9*2 and two the g.42614AϾC (I359L) CYP2C9*3 SNPs. Haplotype variants were introduced into a CYP2C9/luciferase reporter plasmid using site-directed mutagenesis, and the impact of the variants on promoter activity assessed by transient expression in HepG2 cells. Both constitutive and pregnane X receptor-mediated inducible activities were measured. Haplotypes 1B, 3A, and 3B each exhibited a 65% decrease in constitutive promoter activity relative to the reference haplotype. Haplotypes 1D and 3B exhibited a 50% decrease and a 40% increase in induced promoter activity, respectively. These data suggest that genetic variation within CYP2C9 regulatory sequences is likely to contribute to differences in CYP2C9 phenotype both within and among different populations

    Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol.

    Get PDF
    Mammalian CYP4B1 enzymes are cytochrome P450 mono-oxygenases that are responsible for the bioactivation of several exogenous pro-toxins including 4-ipomeanol (4-IPO). In contrast with the orthologous rabbit enzyme, we show here that native human CYP4B1 with a serine residue at position 427 is unable to bioactivate 4-IPO and does not cause cytotoxicity in HepG2 cells and primary human T-cells that overexpress these enzymes. We also demonstrate that a proline residue in the meander region at position 427 in human CYP4B1 and 422 in rabbit CYP4B1 is important for protein stability and rescues the 4-IPO bioactivation of the human enzyme, but is not essential for the catalytic activity of the rabbit CYP4B1 protein. Systematic substitution of native and p.S427P human CYP4B1 with peptide regions from the highly active rabbit enzyme reveals that 18 amino acids in the wild-type rabbit CYP4B1 protein are key for conferring high 4-IPO metabolizing activity. Introduction of 12 of the 18 amino acids that are also present at corresponding positions in other human CYP4 family members into the p.S427P human CYP4B1 protein results in a mutant human enzyme (P+12) that is as stable and as active as the rabbit wild-type CYP4B1 protein. These 12 mutations cluster in the predicted B-C loop through F-helix regions and reveal new amino acid regions important to P450 enzyme stability. Finally, by minimally re-engineering the human CYP4B1 enzyme for efficient activation of 4-IPO, we have developed a novel human suicide gene system that is a candidate for adoptive cellular therapies in humans

    Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue

    Get PDF
    The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    CYP2C9 Amino Acid Residues Influencing Phenytoin Turnover and Metabolite Regio- and Stereochemistry

    No full text
    Phenytoin has been an effective anticonvulsant agent for over 60 years, although its clinical use is complicated by nonlinear pharmacokinetics, a narrow therapeutic index, and metabolically based drug-drug interactions. Although it is well established that CYP2C9 is the major cytochrome P450 enzyme controlling metabolic elimination of phenytoin through its oxidative conversion to (S)-5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH), nothing is known about the amino acid binding determinants within the CYP2C9 active site that promote metabolism and maintain the tight stereocontrol of hydroxy metabolite formation. This knowledge gap was addressed here through the construction of nine active site mutants at amino acid positions Phe100, Arg108, Phe114, Leu208, and Phe476 and in vitro analysis of the steady-state kinetics and stereochemistry of p-HPPH formation. The F100L and F114W mutants exhibited 4- to 5-fold increases in catalytic efficiency, whereas the F100W, F114L, F476L, and F476W mutants lost >90% of their phenytoin hydroxylation capacity. This pattern of effects differs substantially from that found previously for (S)-warfarin and (S)-flurbiprofen metabolism, suggesting that these three ligands bind within discrete locations in the CYP2C9 active site. Only the F114L, F476L, and L208V mutants altered phenytoin's orientation during catalytic turnover. The L208V mutant also uniquely demonstrated enhanced 6-hydroxylation of (S)-warfarin. These latter data provide the first experimental evidence for a role of the F-G loop region in dictating the catalytic orientation of substrates within the CYP2C9 active site

    Critical role of histidine residues in cyclohexanone monooxygenase expression, cofactor binding and catalysis

    No full text
    Cyclohexanone monooxygenase (CMO) is a member of the flavin monooxygenase superfamily of enzymes that catalyze both nucleophilic and electrophilic reactions involving a common C4a hydroperoxide intermediate. To begin to probe structure–function relationships for these enzymes, we investigated the roles of histidine residues in CMO derived from Acinetobacter NCIB 9871, with particular emphasis on the wholly conserved residue, His163 (H163). CMO activity was readily inactivated by diethyl pyrocarbonate (DEPC), a selective chemical modifier of histidine residues. Each of the seven histidines in CMO was then individually mutated to glutamine and the mutants expressed and purified from Escherichia coli. Only the H59Q mutant failed to express at significant levels. The H96Q enzyme was found to have a greatly reduced flavin adenine dinucleotide (FAD) content, indicative of compromised cofactor retention. The only significant effect on kcat occurred with the H163Q mutant, which exhibited an not, vert, similar10-fold lower turnover of the prototypical substrate, cyclohexanone. This was accompanied by a doubling in the Km [NADPH] compared to the wild-type enzyme, suggesting that the functional decrement in H163Q is probably not solely a reflection of impaired NADPH binding. These data establish a critical role for H163 in CMO catalysis and prompt the hypothesis that this conserved residue plays a similarly important functional role across the flavin monooxygenase family of enzymes

    Expression and Characterization of CYP4V2 as a Fatty Acid ω-Hydroxylase

    No full text
    Bietti's crystalline dystrophy is an ocular disease that is strongly associated with polymorphisms in the CYP4V2 gene. CYP4 enzymes are typically microsomal fatty acid ω-hydroxylases that function together with mitochondrial and peroxisomal β-oxidation enzymes to degrade cellular lipids. Indeed, ocular and peripheral cells cultured from patients with Bietti's have been reported to exhibit abnormal lipid metabolism. However, CYP4V2 possesses low sequence homology to other members of the CYP4 family. Therefore, we cloned and expressed CYP4V2 and analyzed the functional characteristics of this new cytochrome P450 enzyme. We find that CYP4V2 is a selective ω-hydroxylase of saturated, medium-chain fatty acids with relatively high catalytic efficiency toward myristic acid. Moreover, N-hydroxy-N′-(4-n-butyl-2-methylphenyl formamidine) (HET0016) is a nanomolar inhibitor of the enzyme. Therefore, CYP4V2 exhibits catalytic functions typical of a human CYP4 enzyme, but with a distinctive chain-length selectivity coupled with high ω-hydroxylase specificity. Consequently, defective ω-oxidation of ocular fatty acids/lipids secondary to mutations in the CYP4V2 gene appears to be a plausible mechanism underlying Bietti's crystalline dystrophy
    corecore