22 research outputs found

    Determination of Vortex Paths by Series Expansion Technique with Application to Cruciform Wings

    Get PDF
    A series method of determining two-dimensional vortex paths is considered and applied to the computation of vortex positions behind a slender equal-span cruciform wing at any angle of bank as a function of the distance behind the trailing edge. Calculated paths are shown for four bank angles. For a bank angle of 45 degrees comparison is made with the results of a closed expression given in NACA-TN-2605. For other bank angles water-tank experiments provide qualitative comparison. Satisfactory agreement is found for a sufficient distance downstream to include most practical missile-tail positions. The interference forces on an equal-span cruciform wing are calculated for five angles of bank (including the trivial case of zero bank) from the vortex positions found by use of the series

    A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    Get PDF
    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed

    Theoretical Prediction of Pressure Distributions on Nonlifting Airfoils at High Subsonic Speeds

    Get PDF
    Theoretical pressure distributions on nonlifting circular-arc airfoils in two-dimensional flows with high subsonic free-stream velocity are found by determining approximate solutions, through an iteration process, of an integral equation for transonic flow proposed by Oswatitsch. The integral equation stems directly from the small-disturbance theory for transonic flow. This method of analysis possesses the advantage of remaining in the physical, rather than the hodograph, variable and can be applied in airfoils having curved surfaces. After discussion of the derivation of the integral equation and qualitative aspects of the solution, results of calculations carried out for circular-arc airfoils in flows with free-stream Mach numbers up to unity are described. These results indicate most of the principal phenomena observed in experimental studies

    Thin airfoil theory based on approximate solution of the transonic flow equation

    Get PDF
    A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions
    corecore