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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3096

THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON

NONLIFTING AIRFOILS AT HIGH SUBSONIC SPEEDS 

By John R. Spreiter and Alberta Alksne 

SUMMARY 

Theoretical pressure distributions on nonhifting circular-arc air-
foils in two-dimensional flows with high subsonic free-stream velocity 
are found by determining approximate solutions, through an iteration 
process, of an integral equation for transonic flow proposed by 
Oswatitsch. The integral equation stems directly from the small-
disturbance theory for transonic flow. This method of analysis pos-
sesses the advantage of remaining in the physical, rather than the 
hodograph, variables and can be applied to airfoils having curved sur-
faces. After discussion of the derivation of the integral equation and 
qualitative aspects of the solution, results of calculations carried 
out for circular-arc airfoils in flows with free-stream Mach numbers up 
to unity are described. These results indicate most of the principal 
phenomena observed in experimental studies. At subcritical Mach numbers, 
the pressure distribution is symmetrical about the midchord position 
and the drag is zero. The magnitude of the pressure coefficient is 
found to increase more rapidly with increasing Mach number than the 
Prandtl-Glauert rule would indicate.. When the critical Mach number is 
exceeded, compression shocks occur, the fore-and-aft symmetry of the 
pressure distribution is lost, and the airfoil experiences a drag force. 
As the Mach number is increased further, the shock wave becomes of 
greater intensity and moves rearward along the chord, thereby producing 
a rapid increase in the magnitude of the pressure drag coefficient. At 
Mach numbers close to unity, the variation of the pressure, local Mach 
number, and drag conforms, within the limitations of transonic small 
perturbation theory, to the known trends associated with the Mach number 
freeze. Some comparisons with experimental results are also included. 

The solutions are obtained using an iteration process which differs 
from the classical methods in that the quadratic nature of the integral 
equation is recognized. If the iteration calculations are started using 
the linear-theory solution, it is shown that the retention of the quad-
ratic feature has the interesting effect of forbidding shock-free super-
critical second-order solutions. In order to obtain solutions for
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supercritical Mach numbers, it is necessary to start the iteration cal-
culations with a velocity or pressure distribution which contains a 
compression shock. When this is done, it is found that the iteration 
procedure converges to a definite result. 

INTRODUCTION 

The theoretical problem of transonic flow about thin wings has 
been discussed by numerous authors in recent years. Since the basic 
equations are nonlinear and of mixed type, the difficulties are great, 
and progress has been made only through expenditure of considerable 
effort. At first, only the basic equations and the similarity rules 
were established. (See refs. 1 through 12.) More recently, a small 
number of actual solutions have been determined. At the present time 
the most complete theoretical results are those of Guderley and Yoshihara, 
Vincenti and Wagoner, Cole, and Trilling (refs. 13 through 18) for the 
flow about wedge airfoils at both subsonic and supersonic speeds. These 
were all obtained by transforming the equations to hodograph variables 
whereby the differential equation becomes linear although still of mixed 
type. Superposition of solutions is then possible, but the boundary 
conditions generally become very complicated. It is because of the 
latter difficulty that all the solutions mentioned above are for wedge 
sections. A further disadvantage of the hodograph method is that it is 
definitely restricted to two-dimensional flows, there being no known 
transformation which linearizes the equation for three-dimensional com-
pressible flows. 

If the hodograph transformation is not introduced, there are avail-
able no direct methods of solution. However, various iteration methods 
have been used to study flows with high subsonic free-stream velocities. 
(See ref. 19 for a resume.) Almost all these account for the compressi-
bility effects by source distributions throughout the flow field and 
start with either the solution for incompressible flow or for linearized 
compressible flow as the first approximation. A second approximation 
is calculated from the first and so on. It was not found possible, how-
ever, to iterate starting with a typical shock-free subsonic flow solu-
tion and obtain a typical transonic flow field in which the supersonic 
region ends with a shock. 

Oswatitsch has presented another method in references 20 and 21 for 
determining the transonic pressure distribution on thin airfoils in flows 
with subsonic free-stream velocity. The analysis is carried out In the 
physical rather than the hodograph variables, and leads to a nonlinear 
integral equation in which the unknown velocity appears outside as well 
as inside the integral. Oswatitsch finds approximate solutions not by 
iteration, but by introducing various functions containing undetermined
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parameters into the integral equation and by determining the parameters 
so that the integral equation is satisfied at a small number of points 
on the airfoil. The method is applied to determine the pressure distri-
bution on circular-arc and NACA symmetrical four-digit airfoils. The 
results show certain characteristics of transonic flow such as the 
appearance of shock waves and their rearward movement across the chord 
with increasing Mach number. It is disconcerting, however, that the 
method fails to give proper results at high subsonic Mach numbers 
(greater than about 0.88 for 6-percent-thick circular-arc sections), 
provides a multiplicity of solutions at supercritical Mach numbers, and 
permits the integral equation to be satisfied at only a very limited 
number of points. 

The present work is based on the integral equation of Oswatitsch 
but an iteration process is used to obtain approximate solutions. This 
procedure permits the integral equation to be satisfied at a much larger 
number of points than in the original method of Oswatitsch, gives approxi-
mate solutions at all Mach numbers up to unity, and appears to avoid any 
multiplicity of solutions. The method is applied to determine the theo-
retical pressure distribution on symmetrical circular-arc airfoils at 
zero angle of attack. Except for phenomena that are primarily of viscous 
origin, such as boundary-layer separations, etc., these results exhibit 
most of the experimentally observed features of transonic flows. 

Attention is also called to reference 22 by Gullstrand, an associate 
of Oswatitsch, in which transonic flows about thin airfoils are investi -
gated by still another extension of Oswatitsch's integral-equation theory. 
Gulistrand sought to determine approximate solutions by iteration, 
although his procedure differs considerably from that described herein. 
His method, however, succeeded in determining solutions only when the 
Mach number was less than about 0.90 for 6-percent-thick sections. 
Results were given for the pressure distribution at sonic speed in a 
second paper by Gullstrand (ref. 23), but they were obtained by introduc-
ing a new and more complicated integral equation than that of Oswatitsch 
used herein. In contrast to the present analysis in which the entire 
solution is obtained from the integral equation, Gullstrand uses the 
integral equation to determine only the solution for the forward part of 
the airfoil and uses the method of characteristics to complete the solu-
tion for the rear of the airfoil. Further work of Gullstrand is pre-
sented in references 24 and 25. 

A list of symbols is contained in the Appendix. 

BASIC EQUATIONS 

The basic equations necessary for the discussion of inviscid tran-
sonic flow consist of a set of partial differential equations relating
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the velocity components and their gradients at every point, together 
with the auxiliary relation giving the velocity jump through a shock 
wave. For thin airfoils inclined at zero or small angles of attack, 
the differential equations can be simplified by assuming that the shock 
waves are sufficiently weak that the flow is irrotational and isentropic, 
thereby permitting the Introduction of a velocity potential 0. The 
quasi-linear partial differential equation satisfied by 0 can be 
expressed in the form 

(a2 - c12) 0	 + (a2 - y2) yy + (a2 -
	 2)	 - 20xy't)xy -xx

	

2yzyz -	 = 0	 (1) 

where the subscript notation is used to indicate differentiation and a 
is the local speed of sound given by the relation 

a2=ao2_Zi(x2+y2+z2_Uo2)	 (2) 

In this latter equation U0 and a0 are, respectively, the free-stream 
velocity and the speed of sound in the free stream, and y is the ratio 
of specific heats (for air, y = 1.4). 

It is convenient to introduce the perturbation velocity potential cp, 
where

	

cp=-U0x + ci,	 (3) 

If it is assumed that all perturbation velocities and perturbation veloc-
ity gradients (represented by first and second derivatives, respectively, 
of q) are small and that only the first-order terms in small quantities 
need be retained, equation (1) simplifies to the well-known Prandtl-
Glauert equation of linear theory 

(_2) p	 + p	 + p	 = 0	 (1l) 

	

xx	 yy	 zz 

where the free-stream velocity is directed' along the positive x axis 
as shown in sketch (a) and where M0 = TJ0 /ao is the Mach number of the 
free stream. It is well known that equation (4) leads to useful results 
in the study of subsonic and supersonic flow about thin wings and slender 
bodies but that it is incapable, in general, of treating transonic flows.
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The failure of linear theory in the
	 PA 

transonic range is evidenced by the 	 00 
calculated values of p growing to	 'IØ 
such magnitude that they can no 
longer be regarded as small quanti-
ties when compared with U0. 

Second-order theory for thin 
wings would involve solution of the 
equation

Sketch (a) 

(1- 2) CpXx + cp +cp	
=	 2 [L+l

xx + 771 q (q)+ (p ) + 

'PY'PxY
 + cc)]	 (5) 

UO 

(See ref. 26, P. 1140.) Actually, we are interested in retaining higher-
order terms only to the extent that is necessary to allow the study of 
transonic flow. Examination of the known properties of transonic flow 
fields indicates that the first term on the right can often become of 
Importance and should be retained. It is assumed in the small-
disturbance theory of transonic flow (refs. 1 through 25), however, 
that the remainder of the terms on the right can be safely disregarded. 
The simplified, equation is 

(1- 2) q	 + cp + cp 
=	 2 Z±. cpcp = k	 (6)

UO 

where

k=MO2Z	 (7) 
U0 

As a result of minor differences in the perturbation analysis, recent 
papers have used at least three other. expressions for k. This point 
will be discussed further at the conclusion of the present section. 

Equation (6) is valid only in regions where the necessary deriva-
tives exist and are continuous. Since these conditions do not hold 
where shock waves occur, an additional equation is needed for the tran-
sition through the shock. The necessary equation Is provided by the 
classical relation for the shock polar (e.g., ref. 26, p. 108).
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2	 Uaub_a* +	
= ( a - ub)	 (8) 

	

2	 2	 *2
Ua _uaub+a 

where i, , and	 refer to Cartesian velocity components with 
being parallel to the flow direction ahead of the shock, the subscripts 
a and b refer to conditions ahead of and behind the shock, and a* is 
the critical sound velocity, which can be expressed in terms of U0 
and M0 as follows:

=	 +
 U0 sI 7+1	 (9) 

The appropriate simplified equation is obtained from equation (8) by 
resolving the velocities into components parallel to the axes of the 
coordinate system and carrying out •a small-perturbation analysis analo-
gous to that performed in the derivation of equation (6). In this way, 
the following relation is found between the perturbation velocity com-
ponents on the two sides of the shock wave: 

(1M
O
2 )(ua- ub) 2 + (va-vb)2+(wa-)2 = 2 7l(uab(uu)2

	

Uo	 2 ) 

= k (ua+ub) (ua - ub) 2	 (10) 
2 

where u, v, and w are the perturbation velocity components parallel 
to the x, y, and z axes. This equation corresponds to the shock-polar 
curve for shock, waves of small strength inclined at any angle between 
that of normal shock waves and that of the Mach lines. On either side 
of the shock wave, the perturbation velocity components are related to 
the perturbation velocity potential in the usual manner 

cp	 6cp	 6CP 
u= —,	 v= —,	 w=—	 (11) 

In addition to satisfying the differential equation and the shock-
wave equation, the perturbation potential must provide flows compatible 
with the following physical requirements: (a) the perturbation veloci-
ties must vanish far ahead of the wing and (b) the flow must be tangen-
tial to the wing surface. Therefore, the following boundary conditions 
are to be specified for the perturbation potential:
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at x= -

 = (^! ) -(\)
= 0	 (12) 

4- 

at the wing surface, W

1(c_ 

Uo '\Z)	 x 

where Z/x is the local slope of the wing surface in the x direc-
tion. Furthermore, it is consistent with the assumption of small dis-
turbances to satisfy the second boundary condition on the two sides of 
the xy plane rather than on the actual wing surface. Equation (13) 
thus becomes

1 (6(p	 1 (cp)	 6z	 6 jx y =	 T (
	 ' )	

(14) 
UO ^Z)W U0 6z Z=o	 ^x	 X/C)  

where the shape of the wing profile is given by 

= Tf(, 

	

c	 \\c b ) 

In addition, it is presumed necessary to prescribe that the direct 
influence of a disturbance in the supersonic region proceeds only in 
the downstream direction and that the Kutta condition applies whenever 
the flow velocity at the trailing edge is subsonic. 

Upon solving the above boundary-value problem for the potential, 
one may determine the pressure coefficient for planar systems by means 
of the formula

p - p0 - - 
Cm

	

	

- U0 6x	
(16)

- u02

('3) 

(15) 

COMPARISON WITH OTHER STATEMENTS OF THE TRANSONIC-FLOW EQUATIONS 

As a result of minor variations in the perturbation analysis, recent 
papers have used at least four different relations for k, the coefficient
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of the nonlinear terni in the simplified equation for the perturbation 
velocity potential. As indicated in the preceding paragraphs, straight-
forward development of second-order theory leads to the relation 

k=MO2 Z±. 	 (7) 
U0 

This is sometimes simplified (e.g., refs. 8, 10, and 12) to 

k=2-	 (17) 
U0 

by arguing that M0 can be set equal to unity in this term without any 
loss in accuracy since the right-hand side of equation (6) is merely an 
approximation to allow the treatment of transonic flows and rapidly 
diminishes in magnitude as M0 departs from unity. In some treatments 
(e.g.,.refs. 7 and 23), equation (1) is divided by a 2 and the quo-

tient 1/a2 in each term is expanded in a binomial series. When this 
is done, the coefficient k of the term involving (p cp 	 is 

k =
	 2[2+ (y-1)MO2]	 (i8) 

U0 

Still another expression for k is used by Oswatitsch in the papers 
that form the principal references for the present work. Two deriva-
tions are given, one based on mass-flow considerations (ref. 21) and 
the other (ref. 20) on simplifying equation (1) under the assumption of 
nearly parallel flow to 

(1-M2 )cp	 +cp	 CPzz = 0	 (19)
yy 

and substituting the following series for the variable coefficient (1-M2): 

1 _ M2 =1 _2 M0 + ...	 (20) 
a*_Uo x 

where M is the local Mach number and a* is the critical sound veloc-
ity as defined in equation (9) . Comparison of equations (19) and (20) 
with equation (6) shows that the coefficient k in this approximation 
is

k = l -MO 2	 (21) 
a* - U0
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A similar situation arises in the derivation of the simplified 
equation for the shock polar. Here again the precise form of the expres-
sion for the coefficient k of equation (10) depends on the details of 
the perturbation analysis. The most important point from the present 
point of view is that the same expression for k is used in both the 
equation for the potential and that for the shock polar, namely, equa-
tions (6) and (10). While this point has not always been explicitly 
stated, it is actually a necessary condition for the existence of the 
well-known transonic similarity rules. 

The foregoing discussion has been based on equations obtained by 
assuming that the local velocities are only slightly different from the 
free-stream velocity. On the other hand, many of the recent papers on 
transonic flow about wings and bodies have been based on equations 
obtained by assuming that the local velocities are only slightly dif-
ferent from the critical sound velocity a*. (See refs. 1 through 6, 9, 
and 13 through 18.) It is shown in reference 12, however, that the 
pressure, force, and moment results obtained using these equations are 
identical with those obtained using the present equations if k is 
selected as given in equation (17) . These results, however, can be 
easily converted to those that would be obtained using any of the other 
expressions for k by simply replacing (7+1)/U 0 by k wherever it 

occurs. 

In order to facilitate comparison with previous results and to 
achieve an economy of notation, the present analysis is carried as far 
as possible without specifying a particular relation for k. That is, 
the equations of the analysis and the reduced parameters with which the 
results are expressed are written containing k which may be equated 
to any of the four stated expressions. However, the actual values of 
the pressure coefficient and Mach number for an airfoil of specific thick-
ness ratio depend on which relation is selected for k. The present 
calculations have been made using the expression-for k given in equa-
tion (7). The principal reason for this choice is that it appears to 
provide a set of equations, or a mathematical model, which approximates 
certain essential features of transonic flow with superior accuracy. 
Before proceeding with discussion of this point, it should be noted 
that the four alternative expressions for k are identical for M0 = 11 
and all but that given by equation (17) are zero for M0 = 0. 

A significant case where the four relations lead to different 
results is the prediction of the variation with free-stream Mach number 
of the critical pressure coefficient C cr , defined as the value of the 

pressure coefficient C at a point where the local Mach number is 
unity. It is important that a reasonably good approximation be main-
tained for the variation of CPcr with M0 because shock waves make
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their first appearance and the airfoil first experiences a pressure 
drag when Cr, becomes more negative than C 

cr 
somewhere on the air- 

foil surface. In the present approximation, C	 corresponds to that 

value of Cp and, hence, of 1p at which equation (6) changes locally 
from elliptic to hyperbolic type. This condition is recognized by the 
vanishing of the coefficient of cpu, thus, 

	

1-MO2 - k( (Px )	 = 0cr 

or, in view of equation (16) 

	

2	 -	
(l)	 (22) 

	

Cp =--	 = 
cr	

M
kU0 

The exact relation for isentropic flow is (e.g., ref. 27, p. 28) 

7 
CP = 2 [(Z!MO2\\7 1 _ l]	 (23)

y+l 

The variation of Cpc with M0 has been computed using the exact rela-
tion and each of the four approximate relations. The results are pre-

sented graphically in sketch (b). It 
may be seen that a reasonably good 
approximation for C 

cr 
is obtained 

over a wide Mach number range when k 
is taken as MO2 (y+l)/Uo or 
(1 - MO2)/(a*_Uo), and that a somewhat 
greater error is incurred when k is 
equated to Mo 2[2 + (y-l)MO2)/r.J0 . On 
the other hand, a very poor approxima-
tion results if k is equated to 
(y+l)/U0. 

Similar comparisons can be made 
for local Mach numbers M other than 
unity by noting that the coefficient 
( 1 _ MO2 .k(Px) of cp	 in equation (6)
corresponds, in the present approxima-
tion, to 1-M2 , thus, 

1- M2 = 1- Mo2_	 = 1- MO2 +

(21) 
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The corresponding exact relation for isentropic flow is 

	

r +	 Mo 

Cp	 2	 __ 

	

= 72 — 1+ ( + 	 m2

(25) 

L 
The results so obtained are generally similar to those indicated in 
sketch (b) although the relative accuracy of the better approximations 
changes somewhat with the situation. All the approximations are exact, 
of course, when Cp = 0. On the other hand, none of the approximations 
are exact, except for isolated cases, when C is different from zero, 
even though all of the approximations agree among themselves when the 
free-stream Mach number is unity. In order to provide some information 
regarding the errors that are likely to be incurred when Cp is not 
VLJ OiUa.LL	 Lt..Li k U I [J..b ueeu .J.Le-

pared illustrating the variation of 
local Mach number with pressure coef-
ficient for a free-stream Mach number 
of unity. 

A second case where the exact and 
approximate relations can be compared 
is furnished by considering the veloc-
ity jump through a shock wave. If the 
flow ahead of the shock wave is uni-

.41	 /Q 

CP

form and parallel to the x axis, the	
h ' results may conveniently be repre-	 Sketch 

r-. 2 sented by the shock-polar diagram in which v vb + wb2 is plotted as a 
function of b • The exact relation is furnished by equation (8). The 
corresponding approximate relations are determined from equation (10) 
by setting ua, va, and Wa to zero, whereby 

	

Yb + wb = [(1_ 2 ) + h ub]ub2
	

(26) 

Once the variation of ( vb2 + wb) with ub is determined for a given M01 

the corresponding variation of ( b2 Wb) with b may be readily deter- 
mined since, for this case, 

Ub Uo +Ub,	 Vb=vb,	 Wb=Wb
	

(27) 
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[2	 "2 . The variation of / vb ^ wb with ub for M0 = 1.2 has been computed 
using both the exact and approximate relations, and the results are 
presented graphically in conventional shock-polar form iii sketch (d). 

- -	 It is evident from this comparison 
that the best approximation to the 

-	 2	 shock-polar curve is that obtained -h1/	 by equating k to MO2(y+l),kJ0. 

	

\\	 /	 Since all shock waves are assumed to 
\ç._\• •._(	 be normal to the flow direction in 

	

0"LV \ \,	 the course of the present analysis, 
a notable point is that this expres-
sion for k leads to the exact 

.7	 .8	 .9	 LU	 ii	 12 relation for the velocity jump 

M,=12	
through a normal shock wave. 

Sketch (a) 
In problems such as we are considering here, the final test is 

provided by comparison with experimental results. Although both experi-
mental and theoretical results for the transonic speed range are limited, 
complete information does exist at the present time for the drag of a 
single-wedge section followed by a straight section extending far down-
stream. (See refs. 13, i' ., 16, 28, and 29.) The theoretical results 
were determined originally using equations obtained by assuming that 
the local velocities are only slightly different from the critical 
sound velocity a* and are therefore identical with those that would 
be obtained using the present equations, provided k is equated 
to (7+1)/ri0 . Sketch (e) shows the theoretical and experimental results 
plotted in the same manner as in the original papers. The small vertical 

(#i)'13 
(//C) -q13 

Single -wedge 
sect/on

 
7 

wedge semiangle 450  

Theory 
750  

o	 /000

-2	 -/ 0 M 2^ 1 / 	 2	 3 
[(7 ,i/)(I/c)Je3 

Sketch (e) 
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lines on the experimental data points represent the uncertainty of the 
values. This sketch indicates that the theoretical and experimental 
results are only in general qualitative agreement when k = (y+l)/EJ0. 

The same results are replotted in sketch (r) with k equated 
to MO2 (y+l)/U0 rather than (7+1)/U0 . It can be seen that the theo-
retical and experimental results are now in nearly perfect agreement. 

[(,*/)MohJh/'3 
(1/c)"	 °' 

I
4. 

Single -wedge - 
section 

wedge semiangle 

- 2

Theory 

750 

o	 10.00

-2	 -1	 0	 £	 I	 2 
M0—I 

Ely i-I)M0j't/c)]2" 

Sketch (f) 
Comparison of sketches (e) and (r) provides striking evidence supporting 
the contention that k should be equated to MO2 (y+l)/U0 rather than 
(7+1)/U0.

DERIVATION OF INTEGRAL EQUATIONS FOR TRANSONIC FLOW 

In order to make the present work more self-contained, a deriva-
tion of the integral equations for transonic flows having subsonic free-
stream velocities will be presented even though this has been done 
previously by both Oswatitsch and Gullstrand. (refs. 20, 21, and 22). 
The present derivation, in common with that of Gullstrand, proceeds 
through the application of Green's theorem in a manner closely analogous 
to that employed in linearized wing theory (e.g., ref. 30), except that 
proper cognizance must be taken of the shock discontinuities and of the 
additional nonlinear term in the differential equation for the perturba-
tion velocity potential. For the sake of completeness and to illustrate 
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the simplifications introduced by making additional restrictions and 
assumptions, the derivation will be carried through for lifting wings 
of finite thickness and span, even though the applications contained 
herein will be confined to two-dimensional flow about symmetrical air-
foil sections at zero angle of attack. 

The differential equation fundamental to the following discussion 
is equation (6).

(6) 
x2 	 y2	 z2	 6x 

Since the principal object of the following analysis is to determine 
the pressure which, according to equation (16), is linearly proportional 
to the perturbation velocity component u, it is convenient to work with 
an equivalent equation for u obtained by differentiating equation (6) 
with respect to x; it is

2u	 2	 2u	 2 /u2\ 
(12)_+_+_=k_(_	 (28) 

x2	 y2	 z2	 x2\2J 

It is advantageous to normalize the equations by letting 

-	 -	 -	 -	 k x=x,	 y=3y,	 z=z,	 Cp=—(P 
P2 

-	 k-	 P	 k	 -	 3P	 k 
u=—=--U,	 v=—=—v,	 W= -W	 (29) 

p2	 j	 z	 p 

where

p = AflM.2 

In this way, equations (6) and (28) reduce to the following: 

+ +
(30) 

2

2 + + =	
=

^2 (If
(31) 

2 2 2	 2



1
1/2 

+ ()2 +	 - )
2 Io =	 =

r3
(31.) 
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Before proceeding, it should be noted that the introduction of the 
reduced perturbation velocity component ii permits the ready recogni-
tion of regions of subsonic and supersonic velocities and emphasizes 
the points at which sonic velocity occurs. This relationship becomes 
immediately apparent upon substituting the definition of ii into 
equation (2 I ). Thus,

1-M2	 k 
=1— U  

l_2 

from which it is clear, for flows having subsonic free-stream Mach num-
bers (M0 <1), that ü <1 when the local velocity is subsonic, ü = 1 
when it is sonic, and ü > 1 when it is supersonic. 

As noted above, the derivation proceeds from Green's theorem which 
relates a volume integral over a region R to a surface integral over 
the surface E enclosing R. If a and Q are any two functions which, 
together with their first and second derivatives, are finite and single-
valued throughout R, Green's theorem states

(32) 

= -fff ff ( n	 n)
(2c2 - cr7 2 (x) dR	 (33) 

where the directional derivatives on the left side are taken along the 
normal n, drawn inward , to the surface E. It is convenient to let 

= fl and to choose o as the fundamental solution 1/r3 of the 

equation v2 = 0 

whereby equation (33) becomes 

if
_f _L _^__ 

H -	 - (-)] = - r rr 	 =	

(u dR JJ r3	 r3 22J T3 
E	 B	 R	 (35) 

The variables of integration in the equation are 	 , ij,	 while i, , 
are the coordinates of a point P. It must be observed that 1r 3 is 
singular at r3 = 0 and d is discontinuous at the shock wave. The 
point P and the shock wave must, therefore, be excluded from the 
region B. The exclusion of P from the region R is accomplished by
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enclosing it within a small sphere. 
".	 The shock wave is excluded by altering 

p	 \	 the boundary of the region so that it 

R 	 goes around the shock wave. 	 In this u	 way, equation (35) may be applied to 
the region	 Ru	 bounded by the 
plane and a hemispherical dome of inf i-
nite radius lying above this plane, 

/ exclusive of the subregions surrounding 
P	 and the shock wave (see sketch (g)). 

'<'17
Since, furthermore, the values of 	 ü 
may be assumed to diminish sufficiently 

/	 rapidly with distance that the contri-
butions of the integrals over the hemi-
sphere vanish, the following result is
obtained: 

Sketch (g) 

- - - -	 1	 rri	 u -	 (l\1 - - u(x,y,z) = - - / / I - -- - au - -	 dd - 

	

L I L r3 	 \r3,/J 

fArA(+LLr3 n	 n\r3J a Lr3 n	 n r) b S i ,--

3 6^2 (2	 (36) 

RU 

where the subscript u denotes conditions on the upper side of the xy 
plane, the subscripts a and b denote values immediately ahead of and 
behind the shock wave, and S is the surface of the shock wave. The 
volume integral is defined as follows when P is ahead of S. (For 

1 2 7-2\

	

sake of brevity, iV is written in place of -	 _).) r3 2 \2j 

1	 2 /<a2)	
+00 + fff*dR = lim [dfd(f	 + 

C i—O J 
Ru	 Ru	 E240- 00

0 

XS2	 +co 

f	 + 
U
[	 d)	 () 
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It is clear that the corresponding definition of the volume integral 
when P is behind S can be obtained by rearranging the limits of 
integration. If P is kept fixed in the upper half space and the 
region Rj bounded by the ky plane and a hemispherical dome of infi-
nite radius lying below this plane is considered, it follows in a simi-
lar manner that 

0=
'

'O ffL'
	 (_L

r3jJ	 1J J 1.Lr3 n	 6n \JJ 
cc -	 S1.	 a 

U
	 _L _L_ (ii2 r 1 	 -	

(38) ;ç [
r3)jjC	

lfirJJJ r22) 
R  

where the subscript 2 denotes conditions on the lower side of the i 
plane and the volume integral is defined as follows: 

^2 (d2 ) d'	 0	 XS-E2	 +C* 

= urn f df d{f d+f llfd} jJJ r3 2 

R 2	 R1	 -	 XS+2
 

(.39) 

Introducing the notation 

L U = UU - U	 =	 -	 (ho) 

and adding equations (36) and (38), we have 

=	 - 
11-itJJ L'3	 r3 

W 

--  

	

1141: JJ	 r3	 A 

	

S	 a

dS- 
+ r3	 n\r3) b1 

1PPP 1 2 ( ii2 

J ) dl JJ (1) 
R
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where the surface integral over S represents the sum of the corre-
sponding integrals over S and Sj and the volume integral over R 
represents the sum of the integrals over Ru and Rj. The integrand of 
the first integral of equation (141) is zero over all of the	 plane 
except the surface W of the wing sufficiently extended to include the 
effect of the edge singularities and is, in certain cases, exactly equal 
to the value of ü given by the linearized theory of subsonic flow 
about thin wings (e.g., ref. 30). 

UL = -	 rr [ L	 -

 (_
3!-" dd 	 (42)

r3 	 L	 r ,i JTjf 

W 

It can be seen that the first integral of equation (41) may be equated 
to UL when the problem is one in which 

= LU 

and

= 

This condition exists in those problems where Ad and (u/) are pre-
scribed at the outset by the boundary conditions; for example, (a) given 
the loading on a lifting surface, find the camber distribution; 
(b) given the shape of a symmetrical nonlifting airfoil, find the pres-
sure distribution. 

Equation ( li-i) can be regarded as the final integral equation for ü, 
but it is advantageous for the forthcoming analysis to perform two more 
operations. They are to integrate the volume integral twice by parts _ 
with respect to , taking proper cognizance of the definitions given in 
equations (31) and (39), and to decompose the surface integral over the 
shock wave into components parallel to the axes of the coordinate system. 
In this way, the following equation is obtained:
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-	 1 ff[iu=- 	 I -
'I.ir 	 L3
	

G1
:3j ddfl + 

W

u22 'ddfld +
	 1	 (	 ü2 c_fff1	 LLr3\2I 

R	 S

\\ (01 + 
2 )	 r3JJ[r3	 2)	 2)	 b 

t[i u(i1 [iu	 (	 [c0s(nfi)	 + 

	

1
L r3	 ra)Ja	 r3jjJ cos(n,)Jb 

b 

r1 uu(,-i1lrcos(n,)1 1 [r3	 (73)J	 r)JJLCOS(n,)ij	 (13)a 

Although the integration by parts of the triple integral performed 
in going from equation ( li-i) to (1I3) may seem somewhat arbitrary, the 
resulting equation is superior from the point of view of obtaining 
approximate solutions. For example, the triple integral of equation (41) 
shows a very strong influence of the velocities in the region immediately 
surrounding P since they are multiplied by 1/r 3 . This influence is 
largely nullified in the triple integral of equation (43) because part 
of the region has a negative influence and part has a positive influence. 
The predominent influence in the latter case is furnished by the term u2 /2 standing outside the integral. The contribution of distant regions 
Is also diminished in importance in the triple integral of equation (43) 
since their influence varies inversely with the third power of the dis-
tance, rather than the first power as in equation (ili). A further 
advantage is that the value of the triple integral of equation (143) is 
continuous through a shock wave rather than discontinuous as is the case 
with equation ( li.i). A point of great importance in the approximate 
solution described herein arises from the fact that the integration by 
parts provides extra terms (those containing ü2 /2) in the integrals 
along the shock surface S which combine with those already present in 
such a way that the contribution of these integrals becomes very small 
when the shock waves approach normal waves, as is usually the case at 
high subsonic speeds.
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In addition to satisfying the integral equation for ü given in 
equation (43), the velocity components on opposite sides of shock waves 
must be in accord with the simplified relation for the shock polar given 
in equation (10). This equation maybe rewritten in normalized form by 
introducing the quantities defined in equation (29), thus 

U+U 
(fia ,üb) 2 + ( ab)2 +	 ab)2 = (_a b). (üafib)2	 '() 

Two alternative forms of equation (144 ) are the following: 

(1 - 
Ua+.Ub

(üa b)2 + ( a	 (a b)2 = 0	 (7) 

and

	

ü2\ (	 2\i 
(üaüb')[(üa)	 ub_)] +	 (a b)2 =	 (6) 

If the shock wave -is a normal wave and the flow is parallel to the x 
axis (i.e.,	 = 0, but Üa ub), it can be seen from equa-
tion ( 1I 5) that the normalized perturbation velocity component il jumps 
from 1 + A immediately ahead of the shock to 1 - 	 immediately 
behind-. ,the-shock. On the other hand, equation. ( 14 6) shows that the quan-
tity' - 2/2 is -equal on the two sides of the shock. This is con-
sistent.wirth' -the fact that the latter quantity corresponds, in the 
transonic approximation, to the mass flow, which is continuous through 
a normal shock.-	 - 

The solution, by the present method, of the general problem of 
transonic flow about thin wings requires the solution of equation -i-3) 
while taking proper. account of the shock relations given in equation (44). 
This represents a formidable task well beyond the reach of the'present 
analysis.- Simplification can be achieved in two.ways: by restricting 
attention to a-less general class of problems and by introducing addi-
tional simplifying approximations. The first way is, of course', much - 
to be preferred. Accordingly, in most of the following analysis, atten-
tion will be confined to two-dimensional flows. The necessary equations 
can be obtained from-equations (42) through (44) above by integrating in 
the	 direction from f-= -coto = +, noting that 	 = 0' and that 
ü and W are independent of	 . They are as follows: 	 - - --

UL= -
	 [('L in-
	 LL	 ln-- d	 (1) 

	

21c j \	 r2	 3ç
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u=-

	

2ii J	 r	 rj	 2 2TJ 2 6 E2 r2 

-- F[i
n -)inLi 21t 
	 r2	 2/ \	 2	 r2 a
	

r2 E	 2

	

 1 M - ^	 1) 
+	 -in 1  

	

2,/	 r2J	 [ \\ r2 

(inüin	 1[c0s(n' 	 ()

	

 r2	 f3	 rj J L cos(n,) J J

where

1

h/2	 (49) _2 
[()2	

J 
and

+ (ab)2 =(	 (ü-ü)2	 (50) 
\ 2 

As remarked following equation (42), considerable simplification 
results in both two- and three-dimensional, problems if attention is 
confined to the determination of the pressure distribution on symmetri-
cal nonlifting wings of specified geometry. This restriction permits 
the introduction of the relations 

LU = ALL = 0 

=Lw = n,( 6,̂  ) = given	 (51) 

into the integral over W in either equation (43) or (48). This inte-
gral is then equal to the linear-theory solution uL given in equa- 
tion (42) or (47) and can be determined completely at the outset of the 
analysis.	 -
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SIMPLIFICATION AND APPROXIMATE SOLUTION OF INTEGRAL EQUATIONS 
FOR TRANSONIC FLOW ABOUT NONLIFTING WINGS 

Qualitative Discussion of Integral Equations 

The integral equations and the auxiliary relations developed in the 
preceding section provide a means for the discussion of the aerodynamics 
of symmetrical nonhifting thin wings of specified geometry in flows with 
free-stream Mach numbers up to unity. At the present stage of develop-
ment, however, it is necessary to introduce some further approximations 
before solutions can be obtained. One of the more accurate of these 
involves two statements about the nature of the shock waves. They are: 
(a) all shock waves are assumed to lie in a plane perpendicular to the x 
axis, and (b) the shock waves are assumed to be normal shock waves (i.e., 
normal to the local flow direction). These two statements are slightly 
contradictory in themselves but might be expected to approach the true 
conditions quite closely for flows about thin airfoils. The first state-
ment corresponds to setting cos(n,f) and cos(n,) to zero, thereby 
eliminating part of the integrals over S of equations (43) and (48). 
The second permits an advantageous introduction of equations (30 ) and (46) 

to eliminate the remainder of the integrals over S. The above assump-
tions correspond to setting	 and	 to zero both before and after the
shock wave and lead to the following relations: 

	

(u) =() ,	 (_) =-- (ü- i )=o	 (52)

2a 

Equations (43) and (48) thereby simplify to

	

ddfld	 .(53) 
2 41 ffj - 

for three-dimensional flows, and 

= ü + - -If- -- ln	 dd	 (514.) 

	

L 2	 2t 2 2	 \r2J 
R 

for two-dimensional flows. These equations correspond to those used by 
Oswatitsch and Gullstrand (refs. 20, 21, and 22) although a number of 
further assumptions were necessary before approximate solutions could be 
obtained for the velocity distribution on an airfoil surface. The pres-
ent analysis also requires many of the same or similar assumptions, but 
there are a number of general points which should be discussed before
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any further approximations are introduced. These points were not 
observed in the previous papers and the results suffer by lacking unique-
ness in some cases and failing to converge in other cases. 

Before proceeding further, it should be observed that the solutions 
of equations (53) and (51) must approach those of linear theory when the 
free-stream Mach number is much less than unity, since ü <<1 and the 
terms involving the square of ü become negligible with respect to 
those linear in ii, thereby leaving only 

(u) L 	 (55) 

In the interest of brevity, the integral equations for ü given in 
equations (53) and (54) may be rewritten as follows: 

-	 -	 u2 u = UL + -- - 

where

I =2rffIu 

2(l 
L'

	

	
___)ddd]	 (57) 

R' 
for three-dimensional flows, and 

	

I = 2[1 rru2 62 
ln(i dd]	 (8) 

2Tc 	 \r2) 
R 

for two-dimensional flows. Although I is a function of ü and is 
therefore unknown, it is informative to rewrite equation (56) by solving 
for ü in terms of I and uL, thus 

	

u = i±di - ( L-1 ) =l±A/I _- L	 (59) 

where

L = 2UL - 1 

Several points are to be observed at once with regard to equation (59). 
First of all, the discriminant must always be positive in order to 
obtain real values for, ü, thus 

	

I > L	 (60) 

(56)
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Furthermore, the choice of the plus or minus sign determines whether 
the local velocities are subsonic or supersonic. A change in sign at 
a point where the radical is zero corresponds to a smooth transition 
through sonic velocity. A change in sign at a point where the radical 
Is not zero corresponds to a discontinuous jump in velocity. As pointed 
out following equation (46), such discontinuities correspond to normal 
shock waves and are permissible when they proceed from supersonic to 
subsonic velocities (or from plus to minus sign in equation (59)) when 
progressing in the flow direction. Discontinuities in the reverse 
direction are inadmissible since they correspond to expansion shocks, 
an impossible phenomenon which violates the second law of thermodynamics. 

The values of UL, and hence L, can be calculated for any given 
wing and are generally characterized by certain regions in which UL 
is positive and other regions in which it is negative. The absolute 
values increase continuously with increasing Mach number and the maximum 
positive values may considerably exceed unity as sonic velocity is 
approached in the free stream. Not very much can be stated at this 
point about the values of I, except that they depend on the distribu-
tion as well as magnitude of ü and that the above inequality must be 
satisfied. The relation between the two curves is of utmost importance, 
however, and will be discussed qualitatively in the following paragraphs. 

In order to remove unnecessary complications and to facilitate the 
discussion, the following remarks will be confined to the relations 
between the functions I, L, , and ÜL evaluated at the airfoil surface 
at a single spanwise station situated in the plane of symmetry of the 
wing. In this way, each of the four functions reduces to a function of 
a single variable R and can be illustrated simply by curves rather 
than surfaces or hypersurfaces. The subscript W is appended to 
ü and uL to denote that the values are those at the wing surface. In 
that which follows, the curves will be shown on two separate plots, one 
containing the L and I curves representing the components involved in 
the solution of equation (59) and the other containing the iiu and UL 
curves representing, respectively, the velocity distributions given 
transonic theory and by linear theory. In order to make the discussion 
more definite, the curves will be drawn qualitatively as they would 
appear for a circular-arc airfoil having its maximum thickness at the 
midchord position. A quantitative discussion of these characteristics 
will be taken up for the same airfoil in a later section. 

The linear-theory solution uLW for subsonic flow about circular-
arc airfoils can be easily derived through application of the expression 
given in equation (47). It is found that the values of uLW are symmet-
rical about the micichord position at all free-stream Mach numbers less 
than unity. It follows directly that the L curves possess the same 
symmetry.
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For pure subsonic flows about such an airfoil, it is well known 
that the more exact treatments, such as the K.rman-Tsien or the classi-
cal iteration methods reviewed in reference 19, indicate that the 
nonlinear-theory solutions and, hence,the 	 ÜW and I	 curves, are also 
symmetrical about the midchord position. Since sonic velocity is not 
attained at any point, the	 L and I	 curves never touch.	 Sketches of 
the curves for this condition are 
shown in sketch (h).	 The second I /0 

part of this sketch illustrates the - - ------

fact that	 ÜW	 possesses larger /_r/c	 • 
values over the middle of the air- /"-L 0 
foil chord than does	 uLw.	 This 

relation has not been deduced from 
the foregoing preliminary consid-
erations but is known from many 
sources in classical subsonic Sketch (h) 
theory.	 The same result has been found once again in the present work 
by carrying out an approximate solution of equation (59).	 The details 
of these calculations will be described in a later section.

The curves shown in sketch (h) are typical of those for all Mach 
numbers less than the critical Mach number Mcr, defined as the lôwést 
free-stream Mach number at which sonic velocity ( ÜW = 1) occurs some-
where on the wing surface. The aforementioned symmetry properties are 
preserved for all Mach numbers less than the critical, but the amplitudes 
of all four curves increase with increasing Mach number'. For the symmet-
rical circular-arc airfoils considered here, the maximum values of U,-

.uw 
and UW and, hence, L and I occur at the 50-percent-chord position 
for all subcritical Mach numbers. Thus, in addition to the.requirement 
that I > L at every point, it is necessary when the Mach number is 
equal to the critical value, that I = L at the 50-percent--chord posi-
tion. A rather interesting additional requirement that follows from the 
quadratic nature of equation (56) together with the assumption that U 
reaches a smooth maximum at the 50-percent-chord station is that the 
I and L curves have not only the same first derivatives at this station 
but also identical second derivatives. A typical set of curves for this 
Mach number is shown in sketch (1). 
It is to be remarked that the minus 	 /0 
sign is to be used in equation (59)	 I 

for all free-stream Mach numbers •	 - 
equal to or less than Mcr. 	

0 

It is interesting to contem-
plate the various possibilities 
that may occur when the Mach number 
is increased beyond the critical. 
Accordingly, let us first consider

M.= 

Sketch (i) 
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the implications of assuming that the velocity distribution ÜW remains 
symmetrical and continuous across the chord and simply increases in 
magnitude with increasing Mach number. (This is, in fact, the only type 
of mixed flow field that the classical Iteration methods have indicated, 
but many doubts have been expressed from time to time regarding the 
convergence of the methods when M0 > Mcr.) With such an assumed sym-
metry of the flow, the four curves will appear qualitatively as shown 
in sketch (j). As may be seen, the curves are all rather similar to 

those previously discussed for lower 
I

Mach numbers. The outstanding dil'- 
L	 -	 ference is the relation between I 

and L. When M0 = Mcr, the two 
curves are tangent at the 50-percent-

/	 \	 \	 chord station, and the radius of 
I	 \	 0 

l	
curvature of the I curve at the 

U. >	 Symmetr/èa/ So/ti//on 	 same station is equal to that of 
the L curve. When M0 > Mcr, 

Sketch (j)	 tangency occurs at two points, 
equally spaced before and after the 

50-percent-chord station, and the sign in equation (59) is to be changed 
to plus over the portion of the chord lying between the two points of 
tangency. In order for ÜW to attain its maximum value at midchord, as 
shown In sketch (j), the radius of curvature of the I curve must be 
less than that of the L curve at the 50-percent-chord station. At the 
tangent or sonic points, it follows from equation (59) and the assumption 
of smooth acceleration or deceleration through sonic velocity that the 
second derivative of the I curve is greater than that of the L curve. 
Similar considerations apply for airfoils that are not symmetrical about 
the midchord station. The occurrence of shock-free flow would again 
require that the I curve be tangent to the L curve at two points along 
the chord. 

Before leaving this subject, it is interesting to inquire what the 
result would be of a slight alteration of the airfoil shape, assuming 

that the original shape was such 
that the associated flow was of the / / 

/	 shock-free mixed type. Consider, 

	

Subsonic // Supersoni \	 for sake of simplicity, that the 
basic airfoil is symmetrical about 

U.	
/

the 50-percent-chord station. The 
assumed shock-free flow is there-/ 

/	 fore symmetrical about the midchord. 
/ 

	

/	 station and appears as shown in 

	

/	 sketch (k). In order to preserve / 
-,	 the geometrical symmetry, consider 

-	 that the airfoil shape is changed by 

	

Sketch (k)	 the addition to both upper and lower
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surfaces of small bumps located at the 50-percent-chord station. Since 
the flow adjacent to the bumps is supersonic, their disturbance pattern 
is propagated downstream in narrow bands which reflect alternately from 
the sonic line and the airfoil surface as shown in sketch (i). Busemann 
has pointed out in reference 31 that as the disturbances reach the rear 
of the supersonic region where the 
local Mach numbers of the original 	 ,( \ 
flow approach unity, the reflections  
become increasingly concentrated., 	 Subsoni,'Supe,son/c// 
the disturbances amplify, and 	 a	 I 
finally a shock occurs. It thus 	 -+ 
appears that there are only a 
restricted number of shock-free  
mixed flows and that, in general,	 \\y'/ Y' 
the supersonic region terminates 
with a shock wave.

Sketch (i) 
On the other hand, if the dis-

turbances were propagated forward they would culminate in a shock wave 
at the forward sonic point. This shock, however, would be an expansion 
shock in which the velocity jumps from subsonic to supersonic values. 
As mentioned previously, expansion shocks are forbidden by thermodynamic 
considerations and, hence, must be excluded from the present analysis. 
This can be accomplished by stipulating that the transition from subsonic 
to supersonic velocities at the forward sonic point be smooth, or that 
the L and I curves retain one point of tangency. In addition to pre-
venting the occurrence of expansion shocks, it appears, on the basis of 
the foregoing, that this requirement also effectively rules out all the 
undesired forward propagating disturbances. 

The preceding discussion provides an insight into the mechanism for 
the development of asymmetrical flows about symmetrical airfoils and for 
the occurrence of shock waves. In the present work, these considerations 
are reflected in the relation between the I and the L curves. Thus, 
recall that if the flow is shock free as shown in sketch (k), the I and 
the L curves are both symmetrical as shown previously in sketch (j). 
If the airfoil shape is changed in the manner indicated in sketch (i), 
it is evident that both the I and the L curves will become altered. 
In so doing, the L curve remains symmetrical about the midchord sta-
tion, but the asymmetrical nature of the ü distribution causes the 
I curve to take on larger values over the. rear of the airfoil than over 
the front. If the flow adjusts itself so that the I curve is tangent 
to the L curve at a point on the forward half of the airfoil, as it 
must do to avoid the occurrence of forbidden expansion shock waves, it 
is likely that the curves will not be tangent at a second point along 
the rear half of the airfoil. In the application of equation (59), 
therefore, the sign changes from minus to plus at the point of tangency 
but may change back to minus at a point where the two curves have
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different values. As noted previously, such a condition corresponds, 
in the present analysis, to the occurrence of a shock wave and is asso-
ciated with a UW curve of the type shown in sketch (m). 

Since it has been indicated that 
I	 the shock-free mixed flow is the 

,	 I	 exception rather than the rule, the 
curves of sketch (m) may be regarded 
as typical for the supercritical Mach 

I	 '	 number range. In any event, these 

	

K/c	
general ones since they include the 

-	 o	 curves may be considered as the more 

M0 >Mc,,Asymn,etr/co/ So/u//on	 symmetrical curves as a special case. 
These matters will arise again and be 

Sketch (m) the topic for further discussion in 
the next section in which an approximate method for the solution of the 
integral equation for transonic flow will be described. 

Simplification of the Integral Equation 

The remainder of the present discussion will be concerned with two-
dimensional flow about nonlifting symmetrical airfoils of specified 
geometry under the assumption that any shock waves which may be present 
are normal shocks situated perpendicular to the x axis. The analysis 
will be based therefore on equation (54) which, when written in full, is 

+W + 

	

= UL(X,Z) + u2(,)
	 1if 2

 u() [(-)2-(E-)21 dd 

-CO- 
	 [( ) 2±()2J2

(61) 

Approximate solutions of this equation could conceivably be worked out 
numerically by starting with a two-dimensional grid of suitably selected 
values for u(,) and iterating until convergence is obtained. Such 
calculations would proceed by inserting the assumed values for ü into 
the double integral and solving to obtain the next approximation for 

making use of the tangency condition on the surfaces or functions 
represented by I and L as discussed in the preceding section. If the 
first approximation for ü is taken to be the results given by incom-
pressible or by linearized compressible flow theory, as in the Rayleigh -
Janzen and other classical iteration methods, it seems to be the prevail-
ing belief that convergence will be obtained only when the free-stream 
Mach number is sufficiently small that the flow is subsonic at every 
point. It is at this point that Oswatitsch (refs. 20 and 21) supplied 
the important idea that mixed flow fields containing shock waves can be
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obtained if the starting ü distribution contains shock waves. Thus, 
in place of taking the starting solution to be that given by incompres-
sible or linearized compressible flow theory, the idea is to start with 
a reasonable guess for the values of ü, being sure to include a proper 
discontinuity complying with the shock relations of equation (52), and 
then to proceed to the solution. As will be seen in the succeeding 
sections, it is not necessary to be highly accurate in the initial 
guess for ii. 

A source of difficulty in the numerical solution of equation (61) 
by an iteration process is the double integral. If it could be reduced 
to a single integral by introducing a suitable approximation, the entire 
problem would be greatly simplified. In the present analysis, it is 
assumed, following Oswatitsch, that approximate knowledge of the velocity 
distribution is sufficient for providing a working approximation for the 
double integral. In particular, it is assumed that a sufficiently good 
approximation to the velocities in the vicinity of the wing can be 
expressed in terms of the local coordinate i, the ordinates of the 
airfoil surface z(x), and the desired but unknown velocity distribu-
tion üW(x) on the airfoil surface. This permits one integration to 
be performed, thereby reducing the double integral of equation (61) to 
a single integral. 

A number of statements regarding the variation of ü with 2 over 
the middle portion of the airfoil can be made immediately. For example, 
ii starts from the value ü at the airfoil surface with an initial 
rate of change given by the irrotationality condition 

	

(
)5 )

=
 (LW )	 ( 62) 

6i 
W

and probably vanishes at great distances as 1/2. These conditions, 
of course, are not sufficient to determine completely the variation of 
ü with i, but may be used as the basis for the development of an approxi-
mate relation. Oswatitsch (refs. 20 and 21) has already considered this 
step and has suggested the following relation: 

=	 UW(X,O)	
(63) 

[	 (/b)]2 

where b is a function of iE so chosen that the irrotationality con-
dition is fulfilled at i = 0. Thus, differentiation of equation (63) 
with respect to 2 and insertion of the definitions of equation (29) 
and the boundary condition of equation (i ii-) yield the following:
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b- -2üw	 -	 = - 23	 ü 

(u/)	 k (wix) 

	

= 203	 ÜW	 =	 2üw	 6Ji. 
kU0 ( 2zf x2 )	 (2,i2)	 ( 

where Z represents the reduced ordinates of the airfoil, related to 
the actual ordinates by

(i) =	 Z(x)
	

(65) 

Attention Is called to the fact that the approximate relation for i3(,) 
given above is not entirely satisfactory. Evidence of this is provided 
by the fact that ü is Indicated to be zero in the region ahead of the 
leading edge and behind the trailing edge where b is Infinite and that 
the discontinuities in ü at the shock surfaces are consistent with the 
shock relations only at the surface of the airfoil. The errors in the 
pressures on the airfoil surface resulting from the former are small due 
to the attenuating influence of distance, and those resulting from the 
latter have been partially compensated for by a readjustment of the 
approximation at Mach numbers near unity where the shock strength becomes 
large. 

Substitution of equation (63) into the double integral of equa-
tion (61) permits integration with respect to . Thus, by performing

	

this integration and setting 	 = 0 1 the following approximate Integral 
equation is obtained for

üW2	
c -2 
	 -

(66) 

0 

The function E is 

E (J)= E(X) -	 [j (5-lox2+XI) 
2	

- 

(1lOX2 +5X4) in X-	 (1+X2)(25_7Dc2_x4_ XI) ] 
12

(6)
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The nature of E(X) is illustrated 
graphically in sketch (n). Although 
the integration interval is indicated 
in equation (61) to extend from 
= - to = +, the contribution 

of the regions ahead of the leading 
edge and behind the trailing edge is 
zero since b is infinite. The 
integration need, therefore, be 
carried out only over the chord c. 
It should be noted that the inte-
gral in equation (66) corresponds 
to 1/2 in equation (56).

Although equation (66) is con-
siderably simpler than equation (61) 
owing to the replacement of the	 4 
double integral by a single inte-
gral, many of the essential diffi-
culties remain since the integral	 ______ ______ 
equation is still nonlinear and	 04	 .8	 1.2	 16 
the kernel is singular. Since no 
known methods exist for the solu-
tion of such equations, we can only 	 Sketch (n) 

proceed at the present time by introducing additional simplifications. 
One method proceeds by approximating ÜW with some simple functions 
having certain parameters temporarily unspecified. Values for the 
latter are determined by substituting the functions into the integral 
equation and satisfying the equation at a limited number of points equal 
to the number of unspecified parameters. At this point in the analysis, 
Oswatitsch assumed that the variation of fi across the chord could be 
represented by a parabola, one or two half-parabolas, or a rectangle 
combined with a half-parabola, as illustrated in sketch (o), all of 
unspecified height and chordwise 
extent. No account was taken in the 
integral of the influence of the 
region between the leading edge and  
the station where uLW = 0 on the

Sketch (o) 
forward part of the airfoil nor 
between the station where UT w = 0 on the rear of the airfoil and the 

LW 

trailing edge. Upon inserting a selected combination of the above-
mentioned elements into equation (66) and integrating, there resulted a 
system of simultaneous quadratic algebraic equations having as many mem-
bers as there were elements in the selected general form of solution. In 
many cases, Oswatitsch used only one element, either a parabola or a half-
parabola and assumed a mean value for b for the entire chord. The 
method included no provision for the improvement of the result through
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iteration or other means, the only measure of the accuracy being the 
degree of correspondence between the initial and the final 5W distri-
butions. Nevertheless, the results presented In references 20 and 21 
were encouraging in that they shoved many of the known characteristics 
of transonic flow about airfoils. In particular, shock waves appeared 
when the critical Mach number was exceeded and moved rearward with 
further increases in Mach number. However, because the initial values 
for law were generally substituted not only into the integral but also 
into the term uw2/2 standing outside the integral, and because the 
tangency requirement on the I and L curves necessary for smooth tran-
sition from subsonic to supersonic velocities was not realized, a multi-
plicity of solutions was often obtained. In one case, three solutions 
were actually given and more could have been obtained which would have 
fulfilled equally well the condition of correspondence between initial 
and final result. In addition, the quality of the results appeared to 
deteriorate when the Mach number was increased to higher values, the 
upper limit of acceptability appearing to be a Mach number of about 0.88 
for 6-percent-thick airfoils. 

The integral equation method has been developed further in refer-
ences 22 through 25 by Gulistrand. In the first of these, reference 22, 
equation (61) is simplified to a single integral equation through the 
use of a more elaborate velocity-distribution function than that given 
in equation (63), and the resulting equation is solved by an iteration 
process. The introduction of an iteration procedure makes a marked 
Improvement over the method of Oswatitsch since it then becomes practi-
cal to increase greatly the number of elements with which iiW is repre-
sented. The method is applied to three 6-percent-thick NACA low-drag 
airfoils and the resulting velocity distributions are given. In common 
with the original method of OswatItsch, difficulties occur when the Mach 
number is too close to unity. The highest Mach number for which results 
are given is 0.91. More recently, Gullstrand has presented approximate 
solutions for the velocity distributions on symmetrical airfoils in 
sonic flow in reference 23.' In both of these works, however, the itera-
tion process proceeds by inserting the known values into both the inte-
gral and the term ü 2/2 standing outside the integral. This procedure 
is equivalent to replacing the second-degree equation for üw with a 
linear equation and obscures or loses many of the characteristics of the 
quadratic solution discussed In the preceding section. 

'Since equation (61) degenerates at a Mach number of unity where 1 3 = 0, 
the sonic results of reference 23 are obtained by first developing a 
new double-integral equation to replace equation (61) and then simpli-
fying and solving by an iteration procedure. The integral equation is 
only used, however, to determine the velocity distribution over the 
portion of the airfoil forward of the station of maximum thickness. 
The remainder of the solution is obtained by means of the theory of 
characteristics.
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The present analysis also proceeds through the use of an iteration 
scheme, partly numerical and partly graphical, but the known values are 
substituted only into the integral at each step of the process. The 
quadratic nature of the equation is thereby retained and the tangency 
condition on the I and L curves can be fulfilled. Satisfaction of 
the latter requirement is essential for uniqueness and convergence of 
the solution. Inasmuch as the calculations for the circular-arc section 
were well advanced when Gullstrandts papers were received and were pro-
ducing reasonable results with the simple velocity-distribution function 
of Oswatltsch, it was decided to continue rather than to start over 
using a more elaborate velocity-distribution function. It has been 
found, however, that additional attention must be paid to the influence 
of the region behind the trailing edge at the higher Mach numbers. 
Upon observance of these additional refinements, results are obtained 
for all Mach numbers up to unity. At the lower Mach numbers, these 
results are in general agreement with those found by the simpler, 
although more approximate, method of Oswatitsch. The present method 
carries right on, however, into the higher Mach number range where the 
simpler method met with difficulties and succeeds in showing the well-
known invariance of local Mach number with changes in the free-stream 
Mach number as the latter approaches unity. 

In the present calculations for circular-arc airfoils, the neces-
sity for additional refinement begins at Mach numbers somewhat greater 
than that at which the shock wave reaches the trailing edge. Conse-
quently, no attempt is made to account for the influence of the region 
behind the wing until the Mach number becomes sufficiently large for 
the shock wave to reach the trailing edge. At higher Mach numbers, the 
influence of this region is approximated in the following manner. First, 
it is assumed that the shock wave which stands at the trailing edge 
remains of the strong family as the free-stream Mach number is increased 
to unity. It is assumed furthermore that the flow is parallel to the 

axis at the shock position and that the shock wave is normal to the 
local flow. With these assumptions, it follows from equation (45) that 
the values of Ti immediately behind the shock wave are related to 
those immediately ahead of the shock by 

Ub2Ua	 (68) 

Since Üa is given by equation (63), it follows that fib can be 
expressed in terms of the values of UWand b immediately ahead of the 
shock wave in the following manner: 

Ub(Z) = 2 -
	 ÜWa	

(69) 

{l+(/ba)J2
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Because the shock terminates within a finite distance of the airfoil at 
all subsonic Mach numbers, equation (69) is appropriate only within a 
certain range of	 , namely, that for which Üa > 1. In the present 
calculations, the end of the shock occurs at such large 121 when the 
shock is at the trailing edge that equation (69) has been used to repre-
sent the values for ü behind the trailing edge for all	 . It is 
further assumed that the contribution of the region behind the trailing 
edge can be satisfactorily approximated by equating ii to Ub for all 
points behind the trailing edge. It is recognized that neither of these 
assumptions constitutes a good approximation for ü at great distances 
from the wing, but the attenuating influence of distance diminishes the 
error in the values of the integral at points on the airfoil surface. 
In this way, equation (66) comes to be replaced with the following rela-
tion determined from equation (61) by performing an integration with 
respect to	 under the assumption that the variation of ü with 
(or ) is given by equation (63) for stations ahead of the trailing 
edge and by equation (69) for stations behind the trailing edge. 

-	 -	 11W2 

f

c 2	 -- - 	

2( b)	

uW	 -
a 

UWULw+ 	 --E - -- ET)d+ 
0 

+OD 

Uwa

[ F—d 
2ba c	 \ba 2 

is as defined by equation (67) and F is given by 

_T I	 I	 I	 I F ( ) =F(X) 

-
	 [Tr lxI3x2)

(1+x2)3 

2(1-3X2)lnIXJ	 (2X2X4)1 

(71) 

The nature of F(X) is illustrated 
graphically in sketch (p). In this 
case it is apparent that the three 
integrals of equation (to) taken 
together correspond to 1/2 in equa-
tion (76).

(70) 

where E 
6 

5 

4 

3 
F(I)

2 

/ 

0 

-, L 
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I 

Sketch (p)
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To summarize, equation (66) is used in the present calculations 
when the Mach number is less than that at which the shock wave first 
reaches the trailing edge, and equation (70) is used for higher Mach 
numbers. No significant discontinuities are produced in the value of 
the integrals, however, since the contribution of the additional inte-
grals only becomes significant at Mach numbers greater than that at 
which the procedure is changed. 

Numerical Evaluation of Integral 

One of the principal steps in 
the iteration method used herein for 
the solution of equations (66) and 
(70) is the evaluation of the inte-
grals. Since üW and b are gener-
ally prescribed by a set of numerical 
values rather than by analytical 
functions, a numerical technique has 
been used for the integration. This 
process consists of replacing the	 - 
prescribed ÜW distribution with a	 - 
stepwise approximation as indicated 
in sketch (q), introducing a mean 
value for b for each of the rec-
tangular elements, integrating to 
determine the contribution of a	 Sketch (q) 
single element, and summing the 
influence of all the elements. The contribution of a single element of 
width 1 situated on the airfoil chord, as typified by the shaded area 
of sketch (q), is given by

- - 2	 - -	 - 2	 - - 
UW.	 r i'x-±\ (2i\1 uW	 r - 2	 (-x'\ - 
2	 1L z )' ) J = 2bi	 E - —)d 

ti 2

(72)
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Upon performance of the indicated operations, the following expression 
is obtained for f1: 

lt f 	 1 I3i1 A 

12(l+A2)4	
[(1+A2)4 - (l+A2)2+&(l+A2)_8] +12A(A2-l)lnIAI- 

A(l+ A2 )[(1+ A2 ) 2 + 121 } +
	 1	 13	

I (1+B2)4_(l+B2)2+ 

12(1 + B2 )4 l	 IBI  

8(1+ B2)8] + 12B(B2-1)lnIBI - B(1+B2 )1 (1+B2)2 + 12] } ( 3) 

where

A=
2b1 

B = 1i -2(_) 

2b

22i 
lObii)

l 

-  + 2	 lj ) bj 

- 1 (21 i (2i 

2\	 l j I bj

(714.) 

Thus, the integrals in equations (66) and (70) that contain E are 
approximated as follows: 

	

-2	 -	 - 2 - ' u	 ()	 T UW1	 [(-(_2ij1 / — E	 ___ ___ 

	

j 2b	
- d 

= L 2 1 
L Li) b)J

(75) 

It is evident from equation (70) 
that the contribution of a single 
element of width 1 situated behind 
a shock at the trailing edge, as typi-
fied by the shaded area of sketch (r), 
is composed of two parts. The first 
depends on an integral involving 

y,'c E(X) and is evaluated using f 1 in 
the manner just described for elements 
on the airfoil.
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The second depends on an integral involving F(X) 

_	 = f12F( x) d	 (76) 

which, upon evaluation, yields 

gj =
1	 1	 A -

(1+A2)2	
(1+A2)2 + (1+A2)-2J-2A inlAl _A(1+A2)}+ 

1	
1 B [(l+B2)2 + (1+B2 ) -21 -2B lnBJ_B(1+B2)1 

(32)2 

where A and B remain as defined in equation (711 ). Thus, the integral 
which contains F in equation (70) is approximated as follows: 

r7-\ (22i"1 g111 
ha)	 L\ Zj I ba	 (18) 

Values of f 1 and g 1 are presented graphically in figures 1 and 2. 
(It is noted that the graphs in reference 21 that correspond to figure 1 
of this report are mislabeled.) 

With the simplifications introduced in this section, the function I 
of equation (56) is approximated by 

2 

= 2 

	

fir
(L1i!!)'(I 	 (19)

UW

L 	 bi) 
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for Mach numbers less than those for which the shock wave is situated 
at the trailing edge of the airfoil, and 

I () = 21	
[(-i, (2ii)]+ 02	

(	 I 
-fj 

I.L 2	 j / 	 bi 	 2	 L . z I	 bj) 

UWaZ g1 r(-±	 (!t)l )	 (80) 1 
2	 L\ li/	 b1 JJ 

for larger Mach numbers.

Determination of U-LW 

The term uLW that appears in the integral equation for transonic 
flow represents the values for ü given by linear theory for points on 
the airfoil surface. Its values can be obtained from the general two-
dimensional solution for uL given in equation (47) by performing the 
indicated operations and setting 2 = 0. As noted in equation (51), 
simplification occurs for the symmetrical nonhifting airfoils being con-
sidered herein because

L =	 - u- I = 0 

	

UL WL k	 WL	 kU0 d2Z	 d22
( 

d, 

thuslim 
UL =	 o(f 2	 lnd)= 11m(1fdZlld)

(82) 
d x-
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The Cauchy principal value is understood in the last integral. The 
present calculations are for thin circular-arc airfoils for which the 
reduced ordinates Zu of the upper surface are given by 

-	 kU0 
zu 

= 7 
zu = H	

2	 2 

2t[ -
	 ]}= 2fc [ -(	 1	 (83) 

where f represents a reduced thickness ratio which is related to the 
actual thickness ratio as follows:

C	
(81) 

Performing the indicated operations gives the following expression 
for

(85) it	 (2	 c	 c -5E 

We thus have, by substituting equation (85) into equation (59), 

L() = 2ü -1 =a+ (_)ln -_ 
j 
-1	 (86) it	 1

It is seen that T plays the role of a similarity parameter. Thus, uLW 
for a family of symmetrical nonlifting airfoils having the same thick-
ness distribution depends only on T and the position coordinate i/c. 
Inspection of the integral equations for transonic flow shows that their 
solutions for ÜW also depend only on i and i/c. 

Many previous papers on transonic flow (e.g., refs. 12, i ii-, 16, 17, 
and 18) have used the symbol E o to designate a Mach number thickness-
ratio parameter different from the parameter T used herein. The defi-
nition of	 suitably generalized to allow for various expressions 
for k, and the relation between t o and T are as follows: 

E o = -
1 _2

2/3 
[TJok( t/c) ]

(1)2/3 

y 	
(87)
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The parameter to possesses the distinct practical advantage of 
approaching zero rather than infinity as the Mach number approaches 
unity. The corresponding parameter referring to the local conditions 
has commonly been designated by the symbol t. 

iN2 -	 (88) 

where M is the local Mach number. Since the quantity 1-M2 is shown 
in equation (2 11.) to be equivalent, in the present approximation, to 
l-M-ku, the relation for t may be rewritten as 

1_2_
(89) 

[U0k(t/c) ]2/3 

which may be expressed in terms of ii and ¶ as follows: 

ü-1 
2/3	 (90) 

Iteration Solution of Integral Equation 

Solutions of the simplified Integral equations have been obtained 
for transonic flow about circular-arc airfoils by using a numerical and 
graphical process. Four slightly different techniques are used depending 
on the Mach number or, more precisely, on the value of T. One procedure 
is used for the subcritical Mach number range, a second is used in an 
attempt to find supercritical shock-free solutions, a third to determine 
supercritical solutions In the range of ¶ for which the shock position 
is forward of the trailing edge, and a fourth for still larger values 
of T. The latter range extends up to a free-stream Mach number of 
unity. 

Subcritical flows.- Solutions for small Mach numbers can be obtained 
by a direct Iteration process starting m.n.th the linear-theory solution 
In detail, the calculations proceed in the following manner. The values 
of uLW corresponding to a given ¶ (specified thickness ratio and Mach 

number) are calculated from equation (85). The	 curve is approxi-

mated with a stepwise distribution of ten steps, and the values of the 
I curve are computed therefrom using equation (79). Knowing the values
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Of UL(X) and I(), one obtains a first approximation to üW() using 
equation (59). The process is now repeated using the values for 
to calculate a new I curve, from which a second approximation can be 
determined for 11w etc. A typical set of results illustrating the 
convergence of the process is shown in sketch (s). The process appears 
to converge rapidly, at least in the 
present calculations, whenever the 
Mach number (or more properly	 f) is .3 

sufficiently small that	 ü	 does not 
exceed unity (or the local velocity 
does not become supersonic) at any .2 

point in the calculation.	 If	 T	 is u, 
increased to a value such that 	 ü 
becomes equal to one at any step in 
the iteration, however, the process 
terminates abruptly with the appear-
ance of complex values of 	 ü.	 Since 
the results of successive iterations 
oscillate in this Mach number range

MEEMMMMEEM •V1IUUU•• FAMMMEM MEMMMMMMEN 
WMMMMMMMMM

and since the starting 
11L distribu-

tion provides maximum values that are	 Sketch (s) 
too small, any such termination occurs in the first iteration step. 
Such an abrupt termination of the calculations is in marked contrast to 
the well-known property of the classical iteration methods of producing 
second- and higher-order solutions indicating shock-free mixed flows. 
It will be shown in the following discussion that the difference in 
behavior is not a product of the additional assumptions and approxima-
tions introduced herein, but stems directly from the recognition and 
retention of the quadratic nature of equation (61). 

This point can be discussed in greater detail by confining atten-
tion to only the first step of the iteration procedure in which the 
I curve is calculated using üW = uj . If the present iteration pro-

cedure is used, if the 	 curve is replaced with ten rectangular 

steps as shown in sketch (q), and if the I curve is calculated using 
equation (79), then equation (66) yields the following result for 
at the 50-percent-chord station of a circular-arc airfoil: 

- (-SL) = i ±*/l -	 i + 1.0302	 (91) 

For low Mach numbers,	 is small, the discriminant is positive, and the 
first approximation for law can be readily obtained using the minus 
sign. As 7 increases, the value of the discriminant decreases and 
becomes negative when 7 exceeds 0.490. This value of i, therefore, 
represents an upper limit for the Mach number at which the present 
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process can lead to a useful result if the starting 
11W 

distribution 
is taken to be that given by linear theory. The value of üw(c/2) 
given by equation (91) is equal to (4f/it) at small T , and attains a 
maximum value of unity when j: = 0.490. 

The classical iteration methods of subsonic flow theory have not 
shown such an abrupt termination of solutions upon attainment of sonic 
velocity. The same situation occurs with the present equations if the 
iteration procedure is altered so as to conform with the classical 
methods. This change consists simply of substituting ÜWL into not 

only the integral of equation (66) but also the term UW2 /2 standing 
outside the integral, thereby converting the quadratic equation for ÜW 
into a linear equation. If this procedure is adopted together with the 
same value for the integral that was used to obtain equation (91), the 
result of the first iteration is 

uw()
=	 j! +0.295 .f2	

(92) 2	 Tr 

Since a linear equation is solved at every step of the iteration process, 
the procedure never terminates. Values for uW. in the midchord region 
become larger with every iteration step, however, and it seems to be the 
prevailing belief that convergence is obtained only for Mach numbers less 
than the critical. 

It is of interest to compare the approximate results of the first 
iteration step reviewed above with the exact results for the same-air-
foil given by Hantzsche and Wendt in reference 32. If the latter results 
are made comparable to the present results by taking the limiting value 
corresponding to small-disturbance transonic flow theory, the exact 
result of the first iteration step is 

u()= .+	 - .1 );:2 = .: .j! + 0.257 ,2	 (9.3) 

The first term of both equations (92) and (93) is that given by linear 
theory and is the same in both calculations. The difference in the 
coefficient of the second term is the result of the errors introduced 
in the approximate solution of equation (61)(i.e., the velocity-
distribution function, finite steps for ii, etc.) and is some sort of 
a measure of the accuracy of the approximate calculations. Just as with 
equation (92), a value for ii can be calculated for all F, although 
the question remains of whether the result is a valid first step in a 
convergent process. 

If Hantzsche and Wendt had performed their iteration calculations 
in a manner comparable to that described herein so that the values of 
uL are not introduced as an approximation for ü in determining the
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important influence of the points lying near F, they would have obtained 
the following relation (again to the approximation of transonic flow 
theory) as the result of the first iteration: 

UWj)
- 	

±	 -	
++
	 = 1± Ji -	 + l.1O82 () = 

It 

This result is directly comparable with that given in equation (91) 
except that the double integral of equation (61) is evaluated exactly 
rather than approximately. Again, the accuracy of the approximations 
can be evaluated by comparing the two equations. More important, how-
ever, is the fact that the exact results also terminate when '? exceeds 
a certain value (0.503) and that the corresponding value for ü is 
unity.

12 
As noted above, the first step of 

the present iteration procedure start-
ing with	 uL	 produces maximum values 
for	 ü	 that are too large. 	 Conse-
quently, the calculations terminate at .8 
a value of	 T	 that is somewhat less 
than corresponds to the true critical 
Mach number.	 Solutions can be obtained .6 
for the remainder of the subcritical	 C. 
Mach number range, however, if the 
starting	 is selected having the 
same general form but larger values 
than the corresponding	 distribu-
tion.	 A good starting distribution can 
be obtained by simply extrapolating the 
final results for smaller	 F.

Calculations of the type just des- 
2 

cribed have been carried through for 
several values of f less than the	 Sketch (t) 
critical value ( icr = 0. 598 ), defined as the smallest value of T at 
which sonic velocity ( üW = 1) is attained in the final transonic solu-
tion. The results of these calculations are presented in the form of 
chordwise iaW distributions for various F in sketch (t), and in the 
form of curves of üW versus T for various /c in figure 3•2 The 

2The results for f =Tcr are also included on these graphs in order to 
complete the subcritical range, even though they are obtained using a 
different iteration procedure. Since the procedure is the same as that 
described in the next section, however, no further comment is necessary 
at this point. 
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corresponding values 1aLW given by linear theory are also shown in 
figure 3. Comparison of the two sets of curves reveals that the values 
of üw coincide with those for uLW at sniafl T (low Mach number) but 
become larger than those for	 at most stations on the airfoil as 
approaches Tcr. These trends, 'which are in accord with generally 
accepted experimental and theoretical results, will be discussed at 
greater length in a later section. 

Shock-free supercriticai. flows.- Although it is indicated In the 
preceding discussion that the present iteration process does not lead 
to supercritical shock-free flow about airfoils when the starting point 
for the iteration calculation Is iiL it is considered of importance 
and interest to ascertain the behavior of the present approximation when 
such a solution is deliberately sought by starting with sufficiently 
large values for ii that I Is greater than L. The interest In this 
matter is heightened by the fact that the less detailed method used by 
OswatItsch leads to such results over a limited range of supercritical 
Mach numbers. (See figs. ll.(c) and 14(d) of ref. 20 or figs. 7(c) and 7(d) 
of ref. 21.) Accordingly, iteration calculations have been performed 
starting with 7 greater than Tcr and a symmetrical shock-freeUW 
distribution containing a region of supersonic flow ( üW > i) over the 
middle portion of the chord. A slight change in the iteration procedure 
is necessary, however, to eliminate the difficulty arising from the 
requirement described In an earlier section that I = L at the sonic 
points. To carry out the solution in the same manner as before would 
require that the üW distribution be found for which the corresponding 
I curve is tangent to a given L curve. Rather than attempting to 
find solutions by such indirect means, a method is used in which a new 
value of T is determined in such a manner that the tangency condition 
is fulfilled. In particular, the procedure is to calculate the I 
curve using equation (79) and the assumed values of T and 

11v• The next 
step consists of plotting the I curve and fitting an L curve computed 
from equation (86) for whatever value of T Is necessary to fulfill the 
tangency condition as shown in sketch (j). A new set of values for 
can now be calculated using equation (59). 

h1Wh±L	 (59) 

where the minus sign is used at stations upstream from the forward sonic 
point and downstream from the rear sonic point and the plus sign is used 
for the intermediate stations.
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This process has been carried out for a number of assumed initial 
distributions. Sketch (u) shows a typical set of results obtained 

(I/h

.600,) 

2	 4	 70	 .2	 ,4	 £	 .8	 /D 
(iv)	 (v)

	
(vi) 

Sketch (u) 

by starting with an initial value for T of 0.65 and a iiW distribu-
tion obtained by extrapolating the trends Indicated by the solutions 
for subcritical flows. The assumed initial distribution is indicated 
by a dotted line in the upper portion of part (i) and the associated 
I and L curves are shown immediately below. The tangency requirement 
is fulfilled, by taking 7 = 0.642 which compares well with the Initial 
value of 0.65. The corresponding uW distribution calculated there-
from is shown In the upper portion of part (i). Several points of 
interest are to be noted. The first, of course, is that the assumed 
and calculated ü distributions are distinctly dissimilar. The second 
is that the calculated distribution bears a marked resemblance to a 
result given by Oswatitsch (see fig. l (d) of ref. 20 or fig. 7(d) of 
ref. 21) which may be described as a symmetrical ü distribution con-
taining an abrupt expansion on the front of the air±oil and a compres-
sion shock symmetrically situated on the rear of the airfoil. 

Since the assumed and calculated üW distributions are too dis-
similar to be regarded as solutions, the iteration process was continued, 
using the calculated results of the first step as the initial values for 
the second step. The results of this calculation are suarized in 
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part (ii). As indicated, T changes from 0.642 to 0.671 and the new 
distribution is again markedly dissimilar to the initial distribution. 
The calculations have been carried through several more steps and the 
results are shown in parts (iii) through (vi). It can be seen that the 
initial and calculated üW distributions do not agree, even qualita- 
tively, until several steps of the iteration process have been completed. 
In the meanwhile, the value of T has decreased to approximately that 
for the critical Mach number and the region of supersonic flow has effec-
tively disappeared. The sixth and last step of the iteration calcula-
tions presented in sketch (u) has produced a value of i = 0.600 and 
a ÜW distribution nearly identical with that shown in sketch (t) for 
the critical Mach number (icr = 0.598). Although this sketch shows the 
results of only one series of calculations, similar results have been 
obtained starting with other assumed symmetrical, shock-free, super- 
critical ÜW distributions. No case was found in which the calculated 
values repeated the assumed values until T had decreased to approxi-
mately T cr and the supersonic zone had vanished. 

It should be noted before leaving this section that these results 
are not presented with the intention of proving or disproving anything 
about the more fundaznentalquestion of the existence or nonexistence of 
shock-free transonic flows. The purpose, rather, is to illustrate the 
behavior of the present approximation furnished by the simplified inte-
gral equation and the iteration method of solution. 

Supercritical flows - shock wave forward of the trailing edge.- The 
preceding section has shown how the present method of calculating velocity 
distributions on thin airfoils fails to converge when i is greater than 
cr and the flow is assumed to be shock free. The identical iteration 

process will converge rapidly to a solution, however, if the initial ii 
distribution contains a discontinuity in accord with the shock relations. 
The method starts by selecting a value for i and assuming a reasonable 
distribution for 5W over the chord. The main point to observe in the 
selection of	 is to include a shock wave (a discontinuity in 11W) through which üW jumps from l+ A immediately ahead of the shock to 
1 -Li immediately behind the shock. As noted previously, such a jump in 
11w is consistent with the assumption that the shock wave is a weak normal 
shock. The next step is to calculate the I curve using equation (79) 
and the assumed values of uW and f. The 1 curve is plotted and an L 
curve is computed using equation (86) and whatever value of 'F is nec-
essary to fulfill the tangency condition, as illustrated in sketch (m). 
A new set of values of 

11W can now be calculated using equation (59), 
taking proper care to change from the minus to the plus sign at the point 
of tangency and then return to the minus sign aft of the assumed shock 
position. In this way, a new approximation for the üw distribution 
corresponding to the new value for T is obtained, but the position of 
the shock wave is unaltered. If the new values for T and laware suffi-
ciently close to the assumed values, it is presumed that an approximate 
solution has been found. In general, however, such a close correspondence
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1.7 

is not obtained after the first step, a 1 I	 I	 fl'' I 
and the entire calculation is repeated	 .2	 .4 -

/c 

.6	 .8 

using the new values for 	 and	 x 

in place of those assumed initially. 	 -5 
Throughout the process, the position 
of the shock wave is kept fixed, and 
the value of	 is allowed to vary	 -1.0 

as necessary. In this way, the itera-	 Sketch (w) 
tion process selects the solution for a given shock position rather 
than for a given Mach number. This process was carried out with the 
shock wave situated at several different stations on the airfoil chord 
and was found to converge rapidly even when the selected initial values 
for uW and T differed considerably from their final values. A typical 
set of results (namely, that for the shock position fixed at 90-percent-
chord station) is shown in sketch (v). In common with the rest of the 
calculations, the initial values for 11W and -? were selected by extrap,-
olatin,g the trends indicated by the calculations for more forward shock 
positions. 

Calculations of the type just described have been carried through 
with the position of the shock wave fixed at 60-, 70-, 80-, 90-, and 
100-percent chord. The results are presented as chordwise ÜW dis-
tributions for various T in sketch (w) and as the variation of üw 
with f at selected values of /c in figure 1. 
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In order to test the method further, calculations were repeated in 
many of the cases using a different set of Initial values for T and fl. 
The results of two such calculations for the shock position at the 
90-percent-chord station are shown In sketch (x). Although the results 

Sketch (x) 

shown in part (i) were obtained using values forüw that were pur- 
posely selected to be too large and those of part (ii) to be too small, 
it can be seen that similar results are obtained after only a few steps 
of the iteration process. These same results are presented In a second 
manner in sketch (y) wherein the values of üW at several stations on 
the chord are plotted as a function of T. The final values to which 
the calculations converge (i.e., those given in fig. 1) are indicated by 
the solid line. The points connected by the dotted lines are the values 
obtained at each step of the calculations. It may be seen that the 
present procedure appears first to place the values of üw and ? on the 
curve of correct solutions and, subsequently, to converge to the final 
result.
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Supercritical flows - shock wave at the trailing edge.- The calcu-
lations just described indicate that the shock wave moves rearward with 
increasing f and reaches the trail- AII 
lug edge when	 i = 1.314, correspond-
ing to a Mach number of 0.92 for a 
4-percent-thick circular-arc section. 
The calculations for larger subsonic 2 Mach numbers were performed under the 
assumption that a strong shock wave 
remains at the trailing edge.	 As in 
the preceding analysis, the shock 
wave is assumed to stand perpendic- 2.4 
ular to the x axis, and the flow is 
assumed to be normal to the shock wave.u. 
These latter conditions are not 
strictly correct at the base of the 16 
shock wave since the flow must turn 
through a finite angle. 	 The error 
incurred, however, is small for thin 
airfoils. .8

The method of calculation used 
for the higher Mach number range 
where the shock wave stands at the 	 0 
trailing edge Is essentially the same 
as that used for mixed flows at lower 
Mach numbers. A slight modification 

r-f-T.c

 

in +3i+ f'ha T curve is cal cu - 0 
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ME 
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lated by means of equation (80) rather 	 6	 .8	 10	 12 
than (79). This change is made because 
the contribution of the region imme- 	 Sketch (y) 
diately behind the trailing edge becomes of increasing significance as 
the Mach number approaches unity. Since the contribution is small at 
the lowest Mach number for which the shock wave is situated at the 
trailing edge, no significant discontinuity is produced in the results 
by this change in procedure. A difficulty arises in the iteration 
process, however, because there is no longer any distinguishing feature 
to fix the value of T for which the solution is being sought. To 
review, for pure subsonic flows, f itself can be maintained at a fixed 
value from step to step in the iteration process. At Mach numbers some-
what greater than the critical, where the shock wave stands on the air-
foil, the tangency requirement makes it difficult to prescribe i directly 
but a satisfactory method is obtained by fixing the shock position and 
carrying out the iteration process until the associated value for F 
is found. At still larger Mach numbers, the first method is of no avail 
and the second method cannot produce a unique result since the shock 
wave is considered to be fixed at the trailing edge over the rest of the 
range of subsonic free-stream Mach numbers. For lack of a better method, 
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the calculations were carried out for this range using a procedure that 
might be described as being partly iteration and partly trial and error. 
The calculations proceed as follows: A value of f is selected and an 
estimate made for the associated üW distribution. On the basis of 
these values, calculations are performed resulting in a new set of values 
for	 and üw. Similar calculations are repeated on a trial-and-error 
basis using the same 

11W distribution but various values for T until 
the resulting T is equal to the assumed value. These values are then 
plotted on a graph of üW versus 1. If these values were an actual 
solution of the integral equation, the resulting values of ÜW would 
also be equal to the assumed values. In the present calculations, how-
ever, the resulting values of 	 are generally found to be somewhat 
smaller than the assumed values. These new values for ÜW, together 
with a smaller value for T, are next taken as the starting values for 
a second series of trial-and-error calculations. Again, the uW distri-
bution is held fixed as various values are tried for T. The calcula-
tions are again terminated when the value of f is so selected that it 
repeats itself. The values of T1W and F are then plotted on the graph. 
Unfortunately, it was not found possible in the present calculations to 
determine a set of values for ÜW and T that would repeat themselves 
precisely. In all cases investigated, the values of 

law and j: were 
found to diminish somewhat in successive iteration steps. The source 
of this difficulty has not been ascertained at the present time. It 
could be due to one or more of the simplifying assumptions introduced 
in the approximate calculations or it could be due to the fact that an 
iteration process was not devised which would lead to a definite result, 
as at smaller i. 
2"	 1

There are a number of points, 
however, which tend to indicate that 
the successive values of 

law and ¶ 
obtained after the first few iteration 
steps may be regarded as near solu-
tions. One of these concerns the fact 
that calculations made starting with 
different initial values for üW and 
converge to a common result after the 
first few iteration steps. To illus-
trate, results of typical series of 
calculations starting with f of 
about 20 and three different üW dis- 
tributions are shown in sketch (z). 
It can be seen that the three sets of 

I calculations all converge to determine 
a single line after the first few 
iterations. In order to promote 
insight into the significance of the 
indicated variation of ¶ from step 
to step of the iteration process, the 
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corresponding Mach numbers for a 4-percent-thick section are also shown. 
Comparison on this basis shows that the variation of Mach number from 
step to step of the iteration process is very small. 

An additional factor lending credence to the applicability of the 
solutions for large 	 is provided by the phenomenon of the Mach number 
freeze wherein the local Mach number is invariant with changes in the 
free-stream Mach number when the latter is near unity or, more precisely, 

(dM\ 

	

( — J	 =0	 (95) " dMo 

It is known from the papers of Vincenti and Wagoner (ref. 14), Liepmann 
and Bryson (refs. 28 and 29), and others that the corresponding approxi-
mate relations yielded by the small-disturbance transonic theory is 

(d 

	

dEo)
=0	 (96) 

d 0/ =0  

If the parameter k involved in the definitions of t is independent 
of M0 , as is the case when k is taken to be as given in equation (17), 
and if the local Mach number M is calculated using equation (24), the 
above two relations are completely equivalent. If k contains M0, 
however, as it does in the preferred definition given in equation (7), 
dN/d.Mo only vanishes when M, as well as M0 , equals unity. If it is 
assumed that the freeze extends over a finite range of Mach numbers, the 
variation of ü with T must obey the following relation for large : 

ü-1 
T2/3 

= const.	 (97) 

Equation (97) has been used to compute a curve of law versus F under 
the assumption that the freeze extends at least to as small a value 
of f as 10, which corresponds to a Mach number of 0.978 for a 4-percent-
thick section. These lines, which all have the characteristic form 

)2/3 

	

(Ü)10-1 -	
( 98) 

are also shown in sketch W. It can be seen that the lines so deter-
mined are almost identical with those determined previously after the 
first few steps of the iteration process. This comparison shows that 
the solutions obtained by the iteration process possess the phenomenon
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of the Mach number freeze. A further check was made by extrapolating 
the curves of üw versus ? to T = 40 with the aid of equation (98) and 
using the values thus obtained as the initial values for an iteration 
calculation. It is found that these values nearly satisfy the integral 
equation although the values of iiW and T diminish slightly from step 
to step during the iteration process, just as at the smaller values of 
The significance, in terms of Mach number, of these changes is even 
smaller than at lower Mach numbers. For example, the changes produced in 
the values of ü and f in the first step of the iteration process corre-
spond, for a 4-percent-thick section, to an indiscernible change in the 
local Mach number and a change in the free-stream Mach number of less 
than 0.001. On the basis of these results, it appears proper to extrap- 
olate the curves of üW versus f to values of ¶ approaching infinity, 
corresponding to a Mach number of unity, by using equation (98). 

20
The results of the calculations 

for the range of ¶ for which the shock 
wave is at the trailing edge are summa-
rized in sketch (a') and figure 5. 

RESULTS 

Results in Terms of Reduced Quantities 

The calculations described in the 
preceding sections have produced values 
for the velocity distributions at the 
surface of thin circular-arc airfoils 
in flows having free-stream Mach num-
bers ranging from zero to unity. These 
results are presented in graphical form 
in figures 3 through 5 in terms of the 
reduced quantities ü and ¶ defined in 
equations (29) and (84) and repeated 
below 

-	 k	 -	 U0k	 t U,	 T=	 - 
1-NO2	 (l_2)3/2 c 

where k represents the coefficient of 
the nonlinear term in the approximate 
differential equation for q (eq. (6)). 

The results of a number of pre-

Sketch (a')
	 vious investigations of transonic-flow 
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theory have been presented In terms of the quantities t o and t defined 
in equations (87) and (88) 

1 -
, 

2/3 
[u0k ( t /c ) ]

1 - M2

[U0k(t/c)]23 

The relations between the two sets of quantities are given by equa-
tions (87) and (90)

/ \ 

	

(l 2/3
	

u-i 
O - -	 ,	 - 

Pressure distribution. - In many applications, the quantity of prime 
interest is the pressure distribution rather than the velocity or Mach 
number distribution. Because of the simple relation between the pres-
sure coefficient and the perturbation velocity provided by equation (16), 
however, it is a simple matter to determine the pressure distribution 
once the velocity distribution is known; thus, 

2L1	 2(1-MO2) -	 2(t 
/C)2 3

ü Cp = -	
= - U0k	 = - (uQk)h/32/3)	

(99) 

The latter expression for C suggests the introduction of a reduced 
pressure coefficient C defined by 

- (u0k)'1 
Cp =	 C	 - 2

(T-1

_u 	 (100) 
(t/c)2/3 P =	 3) 

Equation (100) may be rewritten in terms of t o and E as follows: 

C, = - 2( -	 )	 (ioi) 

The foregoing results have been used to calculate C for numerous 
stations on the airfoil chord for various to (or 1). The results so 
obtained are presented in figure 6 in the form of chordwise pressure 
distributions (c vs. :R/c) for various t o . This figure is presented in 
three parts: Part (a) contains the results for subcritical Mach numbers, 
part (b) for slightly supercritical Mach numbers for which the shock wave 
stands on the airfoil surface, and part (c) for still larger Mach numbers 
for which the shock wave is at the trailing edge.
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The same results are presented in another manner in figure 7 in 
which the variation of C with t o is plotted for various stations 
/c along the airfoil chord. This form of presentation is the counter-

part, in terms of reduced quantities, of the plots commonly found in 
many experimental investigations showing the variation of pressure coef-
ficient C. with free-stream Mach number M 0 at prescribed points on 
the surface of wings and bodies. The corresponding curves given by 
linear theory are shown in figure 7 by dotted lines. These curves are 
computed using the equation

8	
(102) 

[	 2 c) cj 

obtained by direct substitution of equations (87) and (100) into equa-
tion (85). It can be seen that the present results and those of linear 
theory are in good agreement for values of to considerably less than 
zero. For t o near to zero, however, the present results display a 
behavior completely different from that indicated by linear theory. 
This is as it should be since it is well known that linear theory is 
totally inadequate for the analysis of steady two-dimensional flows 
about airfoils when the Mach number approaches unity, or, in the pres-
ent notation, when t o approaches zero. 

In order to provide further information regarding the significance 
of the indicated variations of C, with t o , lines of constant E have 
also been included in figure 7. The local velocities are subsonic if 

is negative and are supersonic if t is positive. The Mach number 
freeze is indicated in figure 7 by the curve representing the variation 
of Cp with to at a given station /c becoming parallel to a line of 
constant t. It can be seen from this figure that such behavior occurs 
at all stations on the airfoil for t o near zero. 

Pressure drag.- The foregoing paragraphs have been concerned with 
the determination of pressure distributions on thin nonhifting circular-
arc airfoil sections. Once these results are known, it is a simple 
matter to determine the section pressure drag coefficient c 

Cd
P
d 	2 

c 
TT 2c

J0	
dx dx
	

(103) 

It is convenient at this point to introduce a reduced section drag coef-
ficient	 defined in terms of reduced quantities, thus 

2 c_a(z.j) 
Op	 d	 (104) 

di 
0 
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It is clear from the definitions of C i,, , , and	 that the relation
between cd and Fd is

1/3 
- (u0k)	 dZ	 (U0k)" 
Ed =	 -	

- dx =	 cj	 (105) 
dx	

(t/c)" (tIc)
	 f 

It should be remarked that some additional error is incurred in the 
present calculations of drag because the pressures are large and only 
poorly determined in the vicinity of the leading and trailing edges. 

The variation of	 with to has been computed and the results 
are shown in sketch (bt). It can be seen that j is zero for 
less than _1.418 (corresponding to the critical Mach number). The rapid 
rise of j as to is increased beyond the critical is associated with 
the rearward movement of the shock and terminates abruptly when the shock 
reaches the trailing edge at t o = -0.825. The drag coefficient con-
tinues to increase slowly with further increases of t o although at a 
- - - 
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- Tronsonic theory 
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Sketch (b') 

much reduced rate; and, finally, at a value of t o somewhat less than 
zero, Td becomes invariant with further changes in 0 . This latter 
behavior is associated with the Mach number freeze, thus, 

CC	 - 
(d•Ea)	 2 r dCp
	 d(/f)	 j. r (	 '\	 d(Z/) 

di 	 (--1) - cJ (d )	 cj \d0 
? (io6) 



d7c—d)	 =0 
\

(108) 
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Since the Mach number freeze corresponds, in the approximate theory to 
(d/d 0 )	 =0, equation (106) may be simplified to the following 
form:	 O 

d7_)t =	 rc 	 /) -	 [()T.E.L.E. 
dto =0c J	 di	 C L 

= 

I

( T.E; ()L.E.]
(107) 

where (Z)L E and (Zu)TE refer to the ordinates of the upper sur-

face at the leading edge and trailing edge, respectively. Since both 
of these quantities are zero for the circular-arc airfoils treated 
herein, it follows that

The corresponding results for symmetrical double-wedge profiles 
given in references 17, 13, and 14 by Trilling, Guderley and Yoshihara, 
and Vincenti and Wagoner, respectively, are also shown in sketch (b'). 
Except for the value of j at	 = 0, the two sets of results bear 
only a qualitative resemblance. In some cases, the reason for the dif-
ference is clear; in other cases, the reasons are more obscure. An 
example of the former concerns the result that the drag of the circular-
arc section is zero for 	 less than 1.408, whereas the drag of the 
double-wedge section remains finite for all 	 The latter behavior
results from the fact that the critical Mach number is zero for the 
double-wedge section. The reasons for the pronounced difference in 
shape between the two curves for drag at subsonic speeds are not so 
clear. The immediate explanation is that the shock wave moves rearward 
across the chord of the circular-arc airfoil at a more rapid rate than 
it does with the double-wedge airfoil. For the circular-arc airfoil, 
the shock wave has moved to the trailing edge when t o equals -0.825. 
This condition marks the end of the rapid increase in drag. On the 
other hand, Trilling's results for the double-wedge airfoil indicate 
that the shock wave does not reach the trailing edge until the free-
stream Mach number is unity, or t o = 0. Whether this difference is an 
actual property of the solutions of transonic small-disturbance theory 
for these two profiles, or the result of simplifying assumptions intro-
duced in either the present analysis or that of Trilling remains an 
unanswered question at the present time.
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Results in Terms of Physical Quantities 

The preceding section has summarized the results of the present 
calculations of the pressure distribution and drag of thin circular-arc 
airfoils in flows having free-stream Mach numbers up to unity. These 
results are given in terms of the reduced parameters	 ,	 , and, 
which possess the advantage of condensing the information for all thick-
ness ratios onto a single curve, but the disadvantage of being somewhat 
complicated and unfamiliar. Consequently, it is the aim of this section 
to re-express these results in terms of the more conventional quanti-
ties C, c, M0 , and t/c. 

Critical Mach number. - An airfoil property that is always of inter-
est is the critical Mach number, Mcr. The variation of the critical 
Mach number with thickness ratio can be readily determined from the 
result that cr = -1.408, thus,

1- Mcr2 
cr 	 _1.1o8	 (109) 

[ u0k ( t Ic) 
1 2 /3

 

In this and in the remainder of the discussion, it is assumed whenever 
the results of numerical computations are presented that k is as 
defined in equation (7) and that y is /00 
equal to 1.11. Sketch (c') shows a plot 
of the results of these calculations .96 

together with the corresponding results 
obtained using (a) linear theory and .92 
(b) thin-airfoil theory for incompres-
sible flow together with the Krm.n- 88 
Tsien rule to account for the effect M, 
of compressibility.	 In both of the .84 

latter calculations, the variation 
of	 Cper with M0	 was determined using ac 
equation (23), as is customary in 
engineering practice.	 It can be seen .76 
that the present calculations indicate 
+-+ the	 1-4p,i1 Mach number is	 nme- --
what less than given by either linear 	 .02 .04 .06 .08 .10 12 .14 

theory or by the Krman-Tsien method.	
I/c 

This is in accord with the results found 	 Sketch (c') 
when the more exact theories are applied to thin airfoils. 

Pressure distribution.- The foregoing general results have been 
applied to determine the pressure distributions on a if-percent-thick 
circular-arc profile. These results are presented in two alternative 
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forms in sketches (d') and (e'). The first of these shows the chord-
wise variation of C for various free-stream Mach numbers and illus-
trates the development and rearward movement of the shock wave as the 

I 

-.' 

-. 

cp

27

I/I 

Sketch (d') 
free-stream Mach number increases 
beyond the critical. The second sketch 
shows the variation of C with M0 for 
selected points x/c on he airfoil 

- chord. Three sets of auxiliary lines 
x/c are also shown; they are (a) lines of 
to constant local Mach number computed 

using equations (2 1+) and (25) and 
.9 (b) lines showing the variation of Cp 
.8 with M0 at selected points on the air-
7 foil chord computed using thin-airfoil 
6 theory for incompressible flow together 

with the Krmn-Tsien rule. At Mach 
numbers less than the critical, it can 

.4 be seen that the pressure coefficient 
at a given point on the airfoil surface 

.3 varies with Mach number in a manner 
similar to that predicted by the Krinn- 
Tsien rule. it is also apparent, as

.2 was pointed out earlier in connection 
with equations (22) and (23) and 

/ sketch (b), that the value to be taken
for the critical Mach numher differs 

8 
M	

10 slightly depending on whether the lines 
Sketch (e')	 of constant local Mach number are com-

puted by the present approximation 
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(eq. (24)) or by the exact isentropic relation (eq. (25)). The irregu-
lar behavior of the pressures on the rear half of the airfoil at super-
critical Mach numbers is associated with the passage of the shock wave. 
At Mach numbers near unity, a completely different behavior is evidenced 
in which the values of C change with M0 In such a manner that the 
local Mach number remains essentially constant. Direct calculation 
shows that the present theory implies the following approximate relation 
for dCp/d1v1 at a free-stream Mach number of unity.3 

dcp	 =-i_. 
dMo 

)MO =1 
y+l	

(Cp),	 k=MO2
	 MO

('Y+l
 u0 ,

(110) 

This may be compared with the exact relation given by Vincenti and 
Wagoner in reference l.i-. 

(dCp\ 

\ dMJ 01 

Pressure drag.- The variation of 
the section pressure drag coefficient 
cd with M0 has also been calculated 
for the 4-percent-thick circular-arc 
airfoil and the results are shown in 
sketch (f'). The general features of 
this curve are very similar to those	 • 
discussed previously in connection with 
the corresponding curve of sketch (b') 
for the reduced quantities. The major 
point of difference concerns the slOpe

(111) 
y+1	 y+l 

(c)_1 

of the curve at a Mach number of unity
Sketch (r') 

31t might be noted here that numerous investigators have given the 
approximate relation 

(dcp)	 14.

d1VIoM0 - y+l'	
k -

UO 

rather than that given In equation (110). As indicated by the auxil-
iary equations, the relations for dCp/dMO at M0 = 1 follow directly 
from the particular definition of k. It is interesting to observe 
that the expression for k given in equation (7) provides the more 
accurate relation for (dC/dN0 ) 1 , even though, as noted in connec-
tion with the discussion of equation (96), it provides the lesser 
accuracy in the determination of (d1/dM0)1.
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Thus, the preceding discussion has disclosed that d.-c—d/dt is zero at 
a Mach number of unity; whereas sketch (r') shows that dc

0
d/dlvIo is 

negative at M0 = 1. Direct substitution gives the following value for 
this slope:

(dcd	 2 - J	 = - - (cd) 
\dlvIo IMOl	 3

(112) 

Vincenti and Wagoner have shown in reference lii- that the exact relation 
for flow about a closed airfoil is 

	

= - -a-- (c)1	 (113) ( dcd),
dMo=l	 y+1 

The negative value of the slope given in equation (112) arises from the 
fact that the quantity k which appears in all the reduced parameters 
(Cd, Cp, to, etc.) is a function of M0 . If, as in many other papers, Ic 
is equated to (y+l)/Uo and is thus independent of M0 , the value of the 
slope is zero, thus

(
:)M0 =0,	 k=	 (111) 

dN0 =i	 U0

Comparison With Experiment 

Inasmuch as the results described in the preceding sections were 
calculated after making numerous simplifications and approximations, 
not the least of which is the assumption of inviscid flow, it is desir-
able to include some comparisons with experiment. This is particularly 
true for the present problem since it is well known that phenomena out-
side the scope of potential theory, such as separation, boundary-layer 
shock-wave interaction, etc. are prominent features of transonic flow 
about airfoils. Since it is indicated in the preceding discussion that 
the present results are in general accord with the proven Prandtl-Glauert 
and Karman-Tsien results in the subcritical Mach number range, the 
following remarks will be confined to the supercritical range. 

There are at least three papers available which present results of 
detailed measurements of flow at high subsonic velocities about symmet-
rical circular-arc airfoil sections, namely, reference 33 by Liepmann, 

reference 34 by Liepmann, Ashkenas, and Cole, and reference 35 by Wood
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and Gooderum. The first two of these are concerned primarily with 
boundary-layer shock-wave interaction and contains statements casting 
doubt on the accuracy of the values indicated for the free-stream Mach 
number, a quantity of only secondary interest in their investigations. 
In general, it appears that values given for M, in these two papers 
are somewhat too great. The more recent investigation of Wood and 
Gooderum appears to be better in this particular and possesses the 
advantage of being made with an interferometer so that knowledge is 
gained about the entire flow field. A disadvantage, however, is that 
the tests were made using a 12-percent-thick model, which severely 
strains the assumptions of transonic small-disturbance theory. Never-
theless, the comparisons will be made with the data of reference 35. 

The studies of Liepmann (ref. 33), Ackeret, Feldmann, and Rott 
(ref. 36), and others have shown that the boundary layer can have a 
profound influence on a transonic flow field. This immediately raises 
a question regarding the usefulness of a potential-flow theory, such as 
the present, which disregards the boundary layer completely. In order 
to illustrate better the nature of these effects, two interferograms 
of the flow about 12-percent-thick circular-arc airfoils are reproduced 
from reference 35 and shown in sketch (g'). The free-stream Mach 

laminar

	

	 turbulent 
ii 

t/c=.12, M0 .881f Re=600,000, ref 35 

Sketch (g') 

number is 0.88, and the Reynolds number based on the chord is 600,000 
for both photographs. The conditions for the two flows differ in that 
the boundary layer is laminar in the flow pictured on the left and 
turbulent in that pictured on the right. The interferogram for the
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laminar case shows that the shock waves are of the A type and that 
the flow separates near the midchord station. When the boundary layer 
is turbulent, however, it may be seen that the shock wave is of the 
simple single-wave type, and that the extent of the region of separated 
flow is greatly diminished. From this pair of photographs, it is appar-
ent that two of the simplifying assumptions introduced in the course of 
the present analysis (i.e., (a) no flow separation occurs and (b) the 
shock wave is a single normal wave) are in better accord with the physi-
cal phenomenon if the boundary layer is turbulent ahead of the shock 
wave than if it is laminar. Sketch (h') shows experimental pressure 

-/6 

-/2 

-.8 

-4 

0 

.4 

.8

'.2	 4	 .6	 .8	 /0 

laminar

-Theory ,Experbnenf 
f/c./2, M =. 88, Re 600,000 , ref 35. 

Sketch (h') 

distributions determined from the two interferograms of sketch (g') 
together with the corresponding theoretical results. Because of diffi-
culties in interpreting the interferograaus, the experimental pressure 
distributions presented in reference 35 and reproduced in sketch (h') 
are terminated at the separation point. It can be seen that the theo-
retical results are in substantial agreement with the experimental data 
available for the portion of the airfoil forward of the separation point. 
Although the experimental and theoretical pressure distributions matched 
equally well for all the test data of reference 35, the degree of corre-
spondence must be attributed, in part, to a fortunate cancellation of 
errors since individual components involved in the perturbation analysis 
(e.g., the relation between w and dZ/dx, C and the perturbation veloc-
ity components, etc.) contain appreciable errors when applied to such a 
thick airfoil. Although the corresponding experimental values are not 
available for the pressures at stations aft of the separation point, it 
is presumed, from other experimental data that the pressures reach their 
maximum negative value In the vicinity of the separation point and return
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toward the free-stream value at stations farther aft on the airfoil, 
rather than varying in the manner indicated by the calculated results. 

Before leaving this topic, the following remarks should be made 
concerning experimental factors which may affect these conclusions. 
The first is that the authors of reference 35 do not consider the data 
for the turbulent boundary layer to be as reliable as that for the lami-
nar boundary layer. The reason for this is that the method used to 
make the boundary layer turbulent (the upper half of the airfoil was 
mounted on a flat plate which extended one chord length forward of the 
leading edge of the airfoil) produced such a thick boundary layer that 
difficulties were encountered in correctly extrapolating the lines of 
the interferograms to the airfoil surface.' The differences in boundary-
layer thickness are clearly evident in the interferograms shown in 
sketch (g'). The second stems from the fact that the tests were con-
ducted with a 12-percent-thick airfoil. Comparisons of theory and 
experiment for such thick airfoils not only strain the small-disturbance 
assumptions of the theory but also emphasize unduly such features of 
the flow as the curvature of the shock wave and boundary-layer separa-
tion which are disregarded completely in the theory. The third is con-
cerned with the fact that results of a recent flight investigation by 
Harrin (ref. 37) have shown that, at Reynolds numbers of the order of 
20,000,000, there is very little difference in pressure distribution 
with laminar and turbulent boundary layers. In particular, it is found 
that the ' type shock and large region of separated flow commonly 
associated with laminar boundary layers do not occur. If this result 
is substantiated by further experiments, it will be of particular sig-
nificance in work such as the present where some assumption has to be 
made about the nature of the shock system, and the assumption that the 
shock wave is a single wave leads to the greatest simplification. 

The principal discrepancy between calculated pressure distributions 
and those measured with a turbulent boundary layer stems from the fact 
that the shock wave meets the airfoil surface at a station farther for-
ward than calculated. The interferograms of sketch (g') show that a 
substantial portion of the forward shift is due to a pronounced curva-
ture of the shock wave near the airfoil. This suggests a comparison of 
the calculated shock positions with not only the positions observed at 
the airfoil surface but also at some distance, say a half chord length, 
away from the airfoil. The results of such a comparison with the data 
for turbulent boundary layers given in reference 35 are shown in 

4Results are also given in reference 35, although not for a Mach number 
of 0.88, in which the boundary layer is made turbulent by a wire 
stretched across the test section one chord length ahead of the lead-
ing edge. When these results are plotted in the form shown in sketch 
(ft), they fall about half way between the calculated results and 
those obtained with the half model mounted on a plate.
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Theory	 Ex,oer,mt sketch (i'). It can be seen that the 
(Turbulent flow)	 - 

caicuiatea shock positions vary with 
N0 in a manner which parallels the 
experimental results at z/c = 0.5 but 
not those at the airfoil surface. It 
is almost certain that the details of 
this phenomenon are greatly influenced 
by separation and by interaction of the 
shock wave and boundary layer, and are, 
hence, beyond the reach of separation-
free potential theory for transonic flow. 
Since the pressure gradients and shock 
strength increase with airfoil. thickness, 
it might be presumed that these effects 
would be greater for thick airfoils 
than for thin airfoils. An indication 
of such a trend is furnished by the 
pressure-distribution data of G6thert 
(ref. 38) for NACA 0006, 0009, 0012, 
0017, and 0018 airfoils. Sketch (j') 

M0	 shows a plot of the variation with 
of the shock position at the surface of 

Sketch (1')	 each of these airfoils. If the shock 
positions were changing in accord with the similarity rules of transonic 
flow theory, these results would all fall on a single curve. It can be 
seen, however, that this is not the case and that the shock moves rear-
ward across the chord at a slower rate for the thick airfoils than for 
the thin ones. It appears, therefore, that at best, the calculated shock 

positions will only agree with those 

MEMEMMEW 
10 found experimentally for very thin 

airfoils. 

It is apparent that changes in the 
shock position will be accompanied, in 
many cases, by substantial changes in 
the pressure drag of the airfoil. In 

.6 particular, the forward shift of the 
shock noted for the thick airfoils will 

C diminish the region of high negative 
.4 pressures on the rear of the airfoil, 

thereby decreasing the drag. These 
effects will, of course, be zero until 

2 
the critical Mach number is exceeded, 

• will increase as the shock moves across 
the airfoil, and may diminish somewhat 
again as sonic free-stream velocity is 

/1	 nln,l	 rnn +L,n nn+iil	 fle TTl 1 00 
-16	 -12	 -8	 -4	 0	

0. 

e.	 calculated, shock position then approaches 

Sketch ()	 the trailing edge. These effects would 
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drag of a thick airfoil so 
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probably alter the curve for the pressure 
that it would appear somewhat like 
that illustrated in sketch (k'). 

CONCLUDING REMARKS 	 Cd 

The foregoing results are 
encouraging in that they show that  
the introduction of a small number	 M0 

of rough, although reasonable,	 Sketch (k') 
assumptions leads to a relatively simple method for the calculation of 
pressure distributions on thin circular-arc airfoils at all Mach numbers 
up to unity. Perhaps the most important aspect of the present work is 
the recognition of the quadratic nature of the integral equation and the 
retention of this feature in the iteration solution. With the knowledge 
that acceptable results can be obtained without excessive effort, it 
appears worthwhile to re-examine the approximate solution of the equa-
tions with an eye toward improvement, or elimination, of the simplifying 
assumptions. Probably one of the weakest elements of the present method 
is the velocity-distribution function introduced in equation (63). This 
particular function is used to determine the entire flow field but, 
actually, only insures that the velocity and velocity gradient have the 
correct value at the airfoil surface and that the velocity diminishes 
toward zero at infinity as l/2. As can be seen by comparing the 
experimental and calculated results shown in sketch (P), this function 

Theory	 Experiment, ref 35 

I	 I	 /	

(Turbulent boundary layer)  /O T 

x/c
	 /0 0 	 to 

/	 II 

Lines of constant C,,, ii.88, f/c =12 
Sketch (z')
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succeeds reasonably well for circular-arc airfoils. On the other hand, 
such a simple function cannot be expected to give good results for all 
airfoils. For instance, the present velocity-distribution function 
cannot be expected to provide good results for airfoils having flat 
surfaces over a substantial part of the chord (e.g., wedge airfoils, 
etc..) since it indicates no attenuation with distance above an element 
of the airfoil where the radius of curvature of the surface in infinite. 
Gullstrand (ref. 22) has proposed a different velocity-distribution 
function which satisfies one more known requirement, but it has not been 
established as yet whether or not it is sufficiently general to cover 
all interesting cases. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Nov. 19, 1953
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APPENDIX

PRINCIPAL SYMBOLS 

a	 speed of sound 

a0	 speed of sound in the free stream 

a*	 critical speed of sound 

b	 function defined in equations (63) and (64) 

C,	 pressure coefficient,
' 

p -p0 

O 2 
2 

(u0k)" 
C  Cp 

(t/c)2/3 

C chord

d 
Cd section pressure drag coefficient,

2 U0 
- (u0k)1"

2 

cd cd 
(t/c)' 

d pressure drag 

E function defined in equation (67) 

F function defined in equation (71) 

f l function defined in equations (72) and (73) 

function defined in equations (76) and (77) 

I function defined in equations (57) and (58) 

k coefficient of nonlinear term of differential equation for 	 p 
(See eqs.	 (7), (17),	 (18),	 and (21).) 

L 

2 width of element used in approximating the chordwise velocity 
distribution
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M	 local Mach number 

Mcr	 critical Mach number 

MO	 free-stream Mach number 

n	 inward normal to surface enclosing B 

P	 arbitrary point x,y,z 

p	 static pressure 

PO	 free-stream static pressure 

R	 region of integration 

Re	 Reynolds number 

r2 

r3	 .V' 

S	 surface of shock wave 

s	 wing senaspan 

t	 maximum thickness of profile 

U0	 free-stream velocity 

u,v,w perturbation velocity components parallel to x,y,z axes, 
respectively 

U.	 --u 

j33 

-	 k 
w	 —w 

33 

Cartesian velocity components on the two sides of a shock wave, 
with	 being parallel to the flow direction ahead of the 
shock
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V  
b 

x,y,z Cartesian coordinates where x extends in the direction of the 
free-stream velocity 

x 

3y 

3z 

Z	 ordinates of wing profiles 

-	 kU0 
z -z 

f33 

A/lMO2 

7	 ratio of specific heats, for air y = 1.14 

difference between values of quantity on the upper and lower 
sides of the xy plane 

variables of integration corresponding to 

- 

[U0k(t/c) j2/3 

-	 i-M2 

[TJ0k(t/c)]2/ 

PO
	 free-stream density of air 

surface enclosing volume R 

kU0 
T

C 

velocity potential 

(p
	 perturbation velocity potential
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Subscripts 

a	 values ahead of shock wave 

b	 values behind shock wave 

cr	 conditions associated with the critical Mach number 

L	 values given by linear theory 

L.E.	 leading edge 

2	 values on the lower surface of wing or wake 

= 1 values at M = 1 

P	 values at arbitrary point P 

S	 values along shock wave 

T.E.	 trailing edge 

u	 values on the upper surface of wing or wake 

W	 values at the wing surface
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(b) Large ?.

Figure 5.- Concluded.
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Figure 7.- Variation of 7p with to for various x/c. 
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