1,195 research outputs found

    Fragility of the A-type AF and CE Phases of Manganites: An Exotic Insulator-to-Metal Transition Induced by Quenched Disorder

    Full text link
    Using Monte Carlo simulations and the two eg-orbital model for manganites, the stability of the CE and A-type antiferromagnetic insulating states is analyzed when quenched disorder in the superexchange JAF between the t2g localized spins and in the on-site energies is introduced. At vanishing or small values of the electron-(Jahn-Teller)phonon coupling, the previously hinted "fragility" of these insulating states is studied in detail, focusing on their charge transport properties. This fragility is here found to induce a rapid transition from the insulator to a (poor) metallic state upon the introduction of disorder. A possible qualitative explanation is presented based on the close proximity in energy of ferromagnetic metallic phases, and also on percolative ideas valid at large disorder strength. The scenario is compared with previously discussed insulator-to-metal transitions in other contexts. It is argued that the effect unveiled here has unique properties that may define a new class of giant effects in complex oxides. This particularly severe effect of disorder must be present in other materials as well, in cases involving phases that arise as a compromise between very different tendencies, as it occurs with striped states in the cuprates.Comment: 13 pages, 17 figures, RevTex 4, submitted for publicatio

    A Biophysically-Based Model of the Optical Properties of Skin Aging

    Get PDF
    This paper presents a time-varying, multi-layered biophysically-based model of the optical properties of human skin, suitable for simulating appearance changes due to aging. We have identified the key aspects that cause such changes, both in terms of the structure of skin and its chromophore concentrations, and rely on the extensive medical and optical tissue literature for accurate data. Our model can be expressed in terms of biophysical parameters, optical parameters commonly used in graphics and rendering (such as spectral absorption and scattering coefficients), or more intuitively with higher-level parameters such as age, gender, skin care or skin type. It can be used with any rendering algorithm that uses diffusion profiles, and it allows to automatically simulate different types of skin at different stages of aging, avoiding the need for artistic input or costly capture processes

    Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes

    Get PDF
    AbstractCationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration

    Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites

    Full text link
    The electrical resistivity, Hall coefficient, and thermopower as functions of temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x <= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude and temperature dependence of the Hall mobility for these compounds is found to be inconsistent with small-polaron theory. The transport data are better described by the Feynman polaron theory and imply intermediate coupling (alpha \~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10 m_0.Comment: 7 pp., 7 Fig.s, to be published, PR

    Measuring the effectiveness of a WhatsApp course against disinformation for the Elderly in Spain

    Get PDF
    According to the ‘1st Study on Disinformation in Spain 2022’, 95.8% of the population identifies disinformation as a social problem; 91% believe that it could endanger a fair democracy and even the stability of a country. There have been many initiatives designed to tackle the effects of disinformation on individuals and on society, with a special focus on younger generations, due to their significant vulnerability. Elderly people, generally more mature and with a built critical thinking, frequently lack knowledge or abilities to select and weigh all the information the Internet provides. This is especially relevant when that information arrives through second generation networks like WhatsApp. The “How to detect false information online?” course, launched in Spain in the spring of 2022, aimed to fight disinformation and was specially targeted to people of over 50 years of age. The project was developed by Poynter/MediaWise, Newtral and Universidad de Navarra, with the support of Meta. This research, developed by Universidad de Navarra for Poynter/MediaWise, with Meta’s support, assesses the effectiveness of such course when it comes to improving the digital skills of elderly users, taking diverse social, demographic and technologyknowledge elements into account

    The ROCK inhibitor Fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus

    Get PDF
    Indexación: Web of Science; Scopus.Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudiltreated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.https://academic.oup.com/ijnp/article/20/4/336/263217
    corecore