10 research outputs found

    Türkiye sığ göllerinin ekolojik yapılarının mevsimsel ve kurak – ıslak yıllar bakımından karşılaştırılması.

    No full text
    Due to global climate change, lakes in Mediterranean climate face the problem of reduced precipitation and enhanced evaporation along with increased water abstraction for irrigation that are largely causing changes in water level, salinity and nutrient dynamics. In this study 22 Turkish shallow lakes were investigated in the Mediterranean climate zone. All lakes were sampled with a well-established snapshot sampling protocol. There are 19 lakes, which were sampled once during both spring and summer seasons within the same year and 9 lakes that were sampled once during both drought and wet years. Also, data of 1997 - 2012 period from Lake Eymir and Mogan were used to investigate the effects of drought in a longer term period. Environmental data were tested for normality and variables that do not follow normal distribution were transformed. Principal Component Analysis (PCA) was applied to the environmental data, including surface water temperature, salinity, pH, mean air temperature, Secchi depth, alkalinity, total phosphorus, total nitrogen, net evaporation, net precipitation and chlorophyll a (spring – summer) and without total nitrogen (Lake Eymir - Mogan) and additionally number of fish and total zooplankton biomass (for wet – dry years). Lakes sampled during spring seasons were associated with high Secchi and maximum depth, dissolved oxygen and precipitation. So, in spring seasons lakes can be characterized as in a clear water state, whereas lakes sampled in summer seasons were identified with high chlorophyll a, total nitrogen and total phosphorous concentration and salinity. Thus, lakes sampled during summer seasons could be considered as eutrophic. Furthermore, lakes sampled in drought years show increased salinity and nutrient concentrations. According to Procrustes analyses of lakes sampled in drought and wet years, the southern lakes displayed small environmental variable differences except Lake Gölcük Ödemiş, and Lake Saka, Poyrazlar and Hamam which were all northern lakes in our dataset of lakes sampled in wet and dry years. Also, Lake Gölcük Ödemiş displayed a low degree of similarity. In northern lakes, Secchi depth and precipitation decrease higher than in southern lakes and total phosphorus and number per unit effort of fish increase due to the effect of eutrophication. On the other hand, in Lake Eymir and Mogan, the internal loading of nutrients and salinity change were explained by high evaporation and increase of water residence time in drought years. Since climate change enhances the drought events and frequency in the Mediterranean climate zone, our results suggest that shallow lakes will turn to eutrophic condition in the future like in drought periods.M.S. - Master of Scienc

    FEN BİLİMLERİ ENSTİTÜSÜ/LİSANSÜSTÜ TEZ PROJESİ

    No full text
    ARAZİ KULLANIM SWAT MODELİNİN MOGAN GÖLÜ HAVZAZINDA UYGULAMAYA KOYMA

    ARAZİ KULLANIM SWAT MODELİNİN MOGAN GÖLÜ HAVZAZINDA UYGULAMAYA KOYMAK

    No full text
    ARAZİ KULLANIM SWAT MODELİNİN MOGAN GÖLÜ HAVZAZINDA UYGULAMAYA KOYMA

    Tracking the microplastic accumulation from past to present in the freshwater ecosystems: A case study in Susurluk Basin, Turkey

    No full text
    Microplastic pollution in aquatic ecosystems has become a global issue in recent years due to its presence everywhere around the world. Although several studies have explored the impact of the accumulation of those small particles in marine environments, comparisons of freshwater systems with marine environments are scarce. In the current study, due to the lack of long-term data on microplastic pollution, we used paleolimnological approaches to acquire the missing information regarding this hot topic. Two short cores were taken from Bursa province in Turkey, which is the center of industrial and agricultural production with many different sectors such as textile and manufacturing. The first core sample was taken from a relatively pristine environment, Lake Uluabat, and the second one was taken from a delta area where all the discharge coming from the basin flowed through to the Marmara Sea. The sediment core from the lake was dated back to the 1960's and the majority of the sample was dominated by fibers. Despite there being no uniform distribution pattern, the number of the microplastics showed decreasing trend after the lake became a Ramsar site. Due to the continuous mixing in the sampling area, there were obstacles via the dating of the Delta core. Nevertheless, the data showed that a high number and variety of microplastics have accumulated over the last decade in the province. This can be interpreted as microplastic pollution reaching the sea directly from the basin. These findings revealed that a plastic chronostratigraphy would give important temporal data regarding the microplastic accumulation in aquatic ecosystems

    Size-selective microplastic uptake by freshwater organisms: Fish, mussel, and zooplankton

    No full text
    Microplastics, as an emergent pollutant, have garnered substantial attention within aquatic environments, yet a significant knowledge gap persists regarding the interplay of organism size and pollution impacts on microplastic uptake in freshwater ecosystems. The main aim of the current study is to assess the microplastic ingestion by aquatic organisms across diverse trophic levels. To achieve this objective, zooplankton, mussels (Anodonta anatina), and fish (Carassius gibelio) were collected from the highly polluted Susurluk River Basin in Türkiye. The size distribution encompassed 160.8 ± 56.9 μm for the prevailing zooplankton, 6.9 ± 2.2 cm for mussel, and 20.4 ± 3.1 cm for fish, respectively. While no microplastic ingestion was observed among zooplankton, the finding highlights the influence of body-size and pollution on microplastic ingestion. In contrast, A. anatina and C. gibelio contained 617 and 792 microplastic particles, respectively. Predominantly, fibers emerged as the most prevalent microplastic type across trophic levels (except zooplankton) followed by films. Notably, only fish exhibited fragments within their gastrointestinal tract. A substantial correlation emerged between microplastic abundance and mussel size and weight, but no such correlation manifested for fish. The study also revealed a positive link between microplastic count and turbidity (phosphate and high Chl a level), impacting mussel ingestion capacity due to the variability in the food availability and potential shifts in feeding preferences. Conversely, no distinct pattern emerged for fish concerning water quality parameters and ingested microplastics. Consequently, our study underscores diverse microplastic uptake patterns in freshwater ecosystems, with a predominant frequency of microplastics falling with the 0.3 mm–3.0 mm range, emphasizing the significance of size-selective uptake by organisms

    Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment

    No full text
    <p>Over the course of 78 days, nine outdoor mesocosms, each with 1350 L capacity, were situated on a pontoon platform in the middle of a lake and exposed to 0 μg L<sup>−1</sup> TiO<sub>2</sub>, 25 μg L<sup>−1</sup> TiO<sub>2</sub> or 250 μg L<sup>−1</sup> TiO<sub>2</sub> nanoparticles in the form of E171 TiO<sub>2</sub> human food additive five times a week. Mesocosms were inoculated with sediment, phytoplankton, zooplankton, macroinvertebrates, macrophytes and fish before exposure, ensuring a complete food web. Physicochemical parameters of the water, nutrient concentrations, and biomass of the taxa were monitored. Concentrations of 25 μg L<sup>−1</sup> TiO<sub>2</sub> and 250 μg L<sup>−1</sup> TiO<sub>2</sub> caused a reduction in available soluble reactive phosphorus in the mesocosms by 15 and 23%, respectively, but not in the amount of total phosphorus. The biomass of Rotifera was significantly reduced by 32 and 57% in the TiO<sub>2</sub> 25 μg L<sup>−1</sup> and TiO<sub>2</sub> 250 μg L<sup>−1</sup> treatments, respectively, when compared to the control; however, the biomass of the other monitored groups—Cladocera, Copepoda, phytoplankton, macrophytes, chironomids and fish—remained unaffected. In conclusion, environmentally relevant concentrations of TiO<sub>2</sub> nanoparticles may negatively affect certain parameters and taxa of the freshwater lentic aquatic ecosystem. However, these negative effects are not significant enough to affect the overall function of the ecosystem, as there were no cascade effects leading to a major change in its trophic state or primary production.</p
    corecore