313 research outputs found
Controlling high-frequency collective electron dynamics via single-particle complexity
We demonstrate, through experiment and theory, enhanced high-frequency
current oscillations due to magnetically-induced conduction resonances in
superlattices. Strong increase in the ac power originates from complex
single-electron dynamics, characterized by abrupt resonant transitions between
unbound and localized trajectories, which trigger and shape propagating charge
domains. Our data demonstrate that external fields can tune the collective
behavior of quantum particles by imprinting configurable patterns in the
single-particle classical phase space.Comment: 5 pages, 4 figure
Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ° Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΡΠ²
Continuing the search for new analgesics among derivatives of azahetarylcaboxylic acids by the reaction of ethylΒ 2-hydroxy-9-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylate and benzylamines in boiling ethanol the correspondingΒ group of N-(benzyl)-2-hydroxy-9-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxamides has beenΒ synthesized. The structure of the compounds obtained has been confirmed by the data of elemental analysisΒ and NMR 1H spectroscopy. It is noted that the signals of aromatic protons of pyrido-pyrimidine nuclei are shiftedΒ downfield and generally for a typical AMX spin system. At the same time, the signals of aromatic protons ofΒ benzilamide fragments on the contrary are shifted upfield in all cases and focused on very narrow segments of theΒ spectra, thereby undergoing strong distortion. According to the results of the primary pharmacological screeningΒ it has been found that using the standard model of βacetic acid writhingsβ all N-(benzyl)-2-hydroxy-9-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxamides without exception have analgesic properties to a greater or lesser Β degree. Practically the same regularities of the benzylamide fragment structure βbiological effect relationship as inΒ the case of 4-hydroxyquinolin-2-ones analogues have been found. Based on it the conclusion about bioisosterismΒ of 4-hydroxyquinolin-2-one and 2-hydroxy-9-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine nuclei has been made.ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ ΠΏΠΎΠΈΡΠΊ Π½ΠΎΠ²ΡΡ
Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΠΊΠΎΠ² ΡΡΠ΅Π΄ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π°Π·Π°Π³Π΅ΡΠ°ΡΠΈΠ»ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ, ΡΠ΅Π°ΠΊΡΠΈΠ΅ΠΉ ΡΡΠΈΠ»Β 2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ° Ρ Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ½Π°ΠΌΠΈ Π² ΠΊΠΈΠΏΡΡΠ΅ΠΌ ΡΡΠ°Π½ΠΎΠ»Π΅Β ΠΌΡ ΠΎΡΡΡΠ΅ΡΡΠ²ΠΈΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π· Π³ΡΡΠΏΠΏΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]Β ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΠΈΠ΄ΠΎΠ². ΠΠ»Ρ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΉΒ Π°Π½Π°Π»ΠΈΠ· ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ 1Π Π―ΠΠ . ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠΈΠ³Π½Π°Π»Ρ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² ΠΏΠΈΡΠΈΠ΄ΠΎ-ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎΒ ΡΠ΄ΡΠ° ΡΠ΄Π²ΠΈΠ½ΡΡΡ Π² ΡΠ»Π°Π±ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ Π² ΡΠ΅Π»ΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΡΠΈΠΏΠΈΡΠ½ΡΡ ΠΠΠ₯ ΡΠΏΠΈΠ½ΠΎΠ²ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠΈΠ³Π½Π°Π»ΡΒ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² Π½Π°ΠΎΠ±ΠΎΡΠΎΡ Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠ»ΡΡΠ°ΡΡ
ΡΠΌΠ΅ΡΠ΅Π½Ρ Π² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΒ ΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΠΈ ΡΠΎΡΡΠ΅Π΄ΠΎΡΠΎΡΠ΅Π½Ρ Π½Π° ΠΎΡΠ΅Π½Ρ ΡΠ·ΠΊΠΈΡ
ΠΎΡΡΠ΅Π·ΠΊΠ°Ρ
ΡΠΏΠ΅ΠΊΡΡΠΎΠ², Π·Π° ΡΡΠ΅Ρ ΡΠ΅Π³ΠΎ ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°ΡΡ ΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΠ΅. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΠΈΠ½Π³Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΊΡΡΡΠ½ΠΎΠΊΠΈΡΠ»ΡΡ
Β«ΠΊΠΎΡΡΠ΅ΠΉΒ» Π²ΡΠ΅ Π±Π΅Π· ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΠΈΠ΄Ρ Π² ΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ΅ ΠΆΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° Π½Π° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉΒ ΡΡΡΠ΅ΠΊΡ, ΡΡΠΎ ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ 4-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΡ
ΠΈΠ½ΠΎΠ»ΠΈΠ½-2-ΠΎΠ½ΠΎΠ²ΡΡ
Π°Π½Π°Π»ΠΎΠ³ΠΎΠ². ΠΠ° ΡΡΠΎΠΌ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ Π±ΠΈΠΎΠΈΠ·ΠΎΡΡΠ΅ΡΠ½ΠΎΡΡΠΈ 4-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΡ
ΠΈΠ½ΠΎΠ»ΠΈΠ½-2-ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ 2-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΠΈΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΄Π΅Ρ.Β ΠΡΠΎΠ΄ΠΎΠ²ΠΆΡΡΡΠΈ ΠΏΠΎΡΡΠΊ Π½ΠΎΠ²ΠΈΡ
Π°Π½Π°Π»Π³Π΅ΡΠΈΠΊΡΠ² ΡΠ΅ΡΠ΅Π΄ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π°Π·Π°Π³Π΅ΡΠ°ΡΠΈΠ»ΠΊΠ°ΡΠ±ΠΎΠ½ΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ, ΡΠ΅Π°ΠΊΡΡΡΡ Π΅ΡΠΈΠ» 2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡ Π· Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡΠ½Π°ΠΌΠΈ Ρ ΠΊΠΈΠΏΠ»ΡΡΠΎΠΌΡ Π΅ΡΠ°Π½ΠΎΠ»Ρ ΠΌΠΈ Π·Π΄ΡΠΉΡΠ½ΠΈΠ»ΠΈΒ ΡΠΈΠ½ΡΠ΅Π· Π³ΡΡΠΏΠΈ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΡΠ². ΠΠ»Ρ ΠΏΡΠ΄Β ΡΠ²Π΅ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ΄ΠΎΠ²ΠΈ ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Π΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ 1Π Π―ΠΠ . ΠΠΎΠΌΡΡΠ΅Π½ΠΎ,Β ΡΠΎ ΡΠΈΠ³Π½Π°Π»ΠΈ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½ΡΠ² ΠΏΡΡΠΈΠ΄ΠΎ-ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΄ΡΠ° Π·ΡΡΠ½ΡΡΡ Ρ ΡΠ»Π°Π±ΠΊΠ΅ ΠΏΠΎΠ»Π΅ Ρ Π² ΡΡΠ»ΠΎΠΌΡ ΡΡΠ²ΠΎΡΡΡΡΡΒ ΡΠΈΠΏΠΎΠ²Ρ ΠΠΠ₯ ΡΠΏΡΠ½ΠΎΠ²Ρ ΡΠΈΡΡΠ΅ΠΌΡ. Π ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°Ρ ΡΠΈΠ³Π½Π°Π»ΠΈ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½ΡΠ² Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡΠ΄Π½ΠΈΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡΠ² Π½Π°Π²ΠΏΠ°ΠΊΠΈ Π² ΡΡΡΡ
Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ
Π·ΠΌΡΡΠ΅Π½Ρ Ρ Π²ΡΠ΄Π½ΠΎΡΠ½ΠΎ ΡΠΈΠ»ΡΠ½Π΅ ΠΏΠΎΠ»Π΅ ΡΠ° Π·ΠΎΡΠ΅ΡΠ΅Π΄ΠΆΠ΅Π½Ρ Π½Π° Π΄ΡΠΆΠ΅ Π²ΡΠ·ΡΠΊΠΈΡ
Π²ΡΠ΄ΡΡΠ·ΠΊΠ°Ρ
ΡΠΏΠ΅ΠΊΡΡΡΠ², Π·Π° ΡΠ°Ρ
ΡΠ½ΠΎΠΊ ΡΠΎΠ³ΠΎ ΠΏΡΠ΄Π΄Π°ΡΡΡΡΡ Π΄ΠΎΡΠΈΡΡ ΡΠΈΠ»ΡΠ½ΠΎΠΌΡ ΡΠΏΠΎΡΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΡΠ½Π³Ρ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π½Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΡΠΎΠ²ΠΎΠΊΠΈΡΠ»ΠΈΡ
Β«ΠΊΠΎΡΡΡΠ²Β» Π²ΡΡ Π±Π΅Π· Π²ΠΈΠΊΠ»ΡΡΠ΅Π½Π½Ρ N-(Π±Π΅Π½Π·ΠΈΠ»)-2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-3-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠ°ΠΌΡΠ΄ΠΈ Π² ΡΡΠΉ ΡΠΈ ΡΠ½ΡΡΠΉ ΠΌΡΡΡ Π²ΠΈΡΠ²Π»ΡΡΡΡ Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ.Β ΠΡΠΈ ΡΡΠΎΠΌΡ Π·Π½Π°ΠΉΠ΄Π΅Π½Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎ ΡΡ ΠΆ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡ Π²ΠΏΠ»ΠΈΠ²Ρ Π±ΡΠ΄ΠΎΠ²ΠΈ Π±Π΅Π½Π·ΠΈΠ»Π°ΠΌΡΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° Π½Π° Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉΒ Π΅ΡΠ΅ΠΊΡ, ΡΠΎ ΠΉ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ 4-Π³ΡΠ΄ΡΠΎΠΊΡΠΈΡ
ΡΠ½ΠΎΠ»ΡΠ½-2-ΠΎΠ½ΠΎΠ²ΠΈΡ
Π°Π½Π°Π»ΠΎΠ³ΡΠ². ΠΠ° ΠΏΡΠ΄ΡΡΠ°Π²Ρ ΡΡΠΎΠ³ΠΎ Π·ΡΠΎΠ±Π»Π΅Π½ΠΎ Π²ΠΈΡΠ½ΠΎΠ²ΠΎΠΊ ΡΠΎΠ΄ΠΎ Π±ΡΠΎΡΠ·ΠΎΡΡΠ΅ΡΠ½ΠΎΡΡΡ 4-Π³ΡΠ΄ΡΠΎΠΊΡΠΈΡ
ΡΠ½ΠΎΠ»ΡΠ½-2-ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ° 2-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-9-ΠΌΠ΅ΡΠΈΠ»-4-ΠΎΠΊΡΠΎ-4Π-ΠΏΡΡΠΈΠ΄ΠΎ[1,2-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΄Π΅Ρ
CONSTRUCTIVE DESCRIPTION OF FUNCTION CLASSES ON SURFACES IN R^3 AND R^4
Functional classes on a curve in a plane (a partial case
of a spatial curve) can be described by the approximation speed by functions that are harmonic in three-dimensional neighbourhoods of the curve. No constructive description of functional classes on rather general surfaces in R 3 and R 4 has been presented in literature so far. The main result of the paper is Theorem 1
Systematic NLTE study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the solar neighbourhood. I. Stellar atmosphere parameters
We present atmospheric parameters for 51 nearby FG dwarfs uniformly
distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable
for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II,
were used to derive a homogeneous set of effective temperatures, surface
gravities, iron abundances, and microturbulence velocities. We used
high-resolution (R>60000) Shane/Hamilton and CFHT/ESPaDOnS observed spectra and
non-local thermodynamic equilibrium (NLTE) line formation for Fe I and Fe II in
the classical 1D model atmospheres. The spectroscopic method was tested with
the 20 benchmark stars, for which there are multiple measurements of the
infrared flux method (IRFM) Teff and their Hipparcos parallax error is < 10%.
We found NLTE abundances from lines of Fe I and Fe II to be consistent within
0.06 dex for every benchmark star, when applying a scaling factor of S_H = 0.5
to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric
parameters were checked for each program star by comparing its position in the
log g-Teff plane with the theoretical evolutionary track in the Yi et al.
(2004) grid. Our final effective temperatures lie in between the T_IRFM scales
of Alonso et al. (1996) and Casagrande et al. (2011), with a mean difference of
+46 K and -51 K, respectively. NLTE leads to higher surface gravity compared
with that for LTE. The shift in log g is smaller than 0.1 dex for stars with
either [Fe/H] > -0.75, or Teff 4.20. NLTE analysis is
crucial for the VMP turn-off and subgiant stars, for which the shift in log g
between NLTE and LTE can be up to 0.5 dex. The obtained atmospheric parameters
will be used in the forthcoming papers to determine NLTE abundances of
important astrophysical elements from lithium to europium and to improve
observational constraints on the chemo-dynamical models of the Galaxy
evolution.Comment: 18 pages, 14 figures, accepted for publication in Ap
- β¦