13 research outputs found
Mix and match recognition modules for the formation of H-bonded duplexes.
Oligomeric molecules equipped with complementary H-bond recognition sites form stable duplexes in non-polar solvents. The use of a single H-bond between a good H-bond donor and a good H-bond acceptor as the recognition motif appended to a non-polar backbone leads to an architecture with interchangeable recognition alphabets. The interactions of three different families of H-bond acceptor oligomers (pyridine, pyridine N-oxide or phosphine oxide recognition module) with a family of H-bond donor oligomers (phenol recognition module) are compared. All three donor-acceptor combinations form stable duplexes, where the stability of the 1 : 1 complex increases with increasing numbers of recognition modules. The effective molarity for formation of intramolecular H-bonds that lead to zipping up of the duplex (EM) increases with decreasing flexibility of the recognition modules: 14 mM for the phosphine oxides which are connected to the backbone via a flexible linker; 40 mM for the pyridine N-oxides which have three fewer degrees of torsional freedom, and 80 mM for the pyridines where the geometry of the H-bond is more directional. However, the pyridine-phenol H-bond is an order of magnitude weaker than the other two types of H-bond, so overall the pyridine N-oxides form the most stable duplexes with the highest degree of cooperativity. The results show that it is possible to use different recognition motifs with the same duplex architecture, and this makes it possible to tune overall stabilities of the complexes by varying the components.We thank the EPSRC and ERC for fundin
Recommended from our members
Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.
Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex
Recommended from our members
Cooperative duplex formation by synthetic H-bonding oligomers.
A series of flexible oligomers equipped with phenol H-bond donors and phosphine oxide H-bond acceptors have been synthesised using reductive amination chemistry. H-bonding interactions between complementary oligomers leads to the formation of double-stranded complexes which were characterised using NMR titrations and thermal denaturation experiments. The stability of the duplex increases by one order of magnitude for every H-bonding group added to the chain. Similarly, the enthalpy change for duplex assembly and the melting temperature for duplex denaturation both increase with increasing chain length. These observations indicate that H-bond formation along the oligomers is cooperative despite the flexible backbone, and the effective molarity for intramolecular H-bond formation (14 mM) is sufficient to propagate the formation of longer duplexes using this approach. The product K EM, which is used to quantify chelate cooperativity is 5, which means that each H-bond is more than 80% populated in the assembled duplex. The modular design of these oligomers represents a general strategy for the design of synthetic information molecules that could potentially encode and replicate chemical information in the same way as nucleic acids.We thank the EPSRC and ERC for funding.This is the final version of the article. It first appeared from RSC via http://dx.doi.org/10.1039/C5SC03414
H-Bond Self-Assembly: Folding versus Duplex Formation
Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.We thank the Engineering and Physical Sciences Research Council (EP/J008044/2) and European Research Council (ERC-2012-AdG 320539-duplex) for funding
Mix and match backbones for the formation of H-bonded duplexes.
The formation of well-defined supramolecular assemblies involves competition between intermolecular and intramolecular interactions, which is quantified by effective molarity. Formation of a duplex between two oligomers equipped with recognition sites displayed along a non-interacting backbone requires that once one intermolecular interaction has been formed, all subsequent interactions take place in an intramolecular sense. The efficiency of this process is governed by the geometric complementarity and conformational flexibility of the backbone linking the recognition sites. Here we report a series of phosphine oxide H-bond acceptor AA 2-mers and phenol H-bond donor DD 2-mers, where the two recognition sites are connected by isomeric backbone modules that vary in geometry and flexibility. All AA and DD combinations form stable AA·DD duplexes, where two cooperative H-bonds lead to an increase in stability of an order of magnitude compared with the corresponding A·D complexes that can only form one H-bond. For all six possible backbone combinations, the effective molarity for duplex formation is approximately constant (7-20 mM). Thus strict complementarity and high degrees of preorganisation are not required for efficient supramolecular assembly. Provided there is some flexibility, quite different backbone modules can be used interchangeably to construct stable H-bonded duplexes.We thank the EPSRC and ERC for funding.This is the final version of the article. It was first available from Royal Society of Chemistry via http://dx.doi.org/10.1039/C5SC04467
c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution