44 research outputs found

    Control of noise-induced oscillations by delayed feedback

    Get PDF
    We propose a method to control noise-induced motion, based on using delayed feedback in the form of the difference between the delayed and the current states of the system. The method is applied to two different types of systems, namely, a selfoscillator near Andronov-Hopf bifurcation and a threshold system. In both cases we demonstrate that by variation of time delay one can effectively control coherence and timescales of stochastic oscillations. The entrainment of the basic period of oscillations by time delay is discovered. We give explanations of the phenomena observed and provide a theory for the system near bifurcation

    Delayed feedback control of chaos: Bifurcation analysis

    Get PDF
    We study the effect of time delayed feedback control in the form proposed by Pyragas on deterministic chaos in the Rossler system. We reveal the general bifurcation diagram in the parameter plane of time delay and feedback strength K which allows one to explain the phenomena that have been discovered in some previous works. We show that the bifurcation diagram has essentially a multi-leaf structure that constitutes multistability: the larger the time delay , the larger the number of attractors that can coexist in the phase space. Feedback induces a large variety of regimes non-existent in the original system, among them tori and chaotic attractors born from them. Finally, we estimate how the parameters of delayed feedback influence the periods of limit cycles in the system

    Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback

    Get PDF
    We study the effect of a time-delayed feedback upon a Van der Pol oscillator under the influence of white noise in the regime below the Hopf bifurcation where the deterministic system has a stable fixed point. We show that both the coherence and the frequency of the noise-induced oscillations can be controlled by varying the delay time and the strength of the control force. Approximate analytical expressions for the power spectral density and the coherence properties of the stochastic delay differential equation are developed, and are in good agreement with our numerical simulations. Our analytical results elucidate how the correlation time of the controlled stochastic oscillations can be maximized as a function of delay and feedback strength

    Intermittency route to chaos and broadband high-frequency generation in semiconductor superlattice coupled to external resonator

    Get PDF
    We investigate the onset of broadband microwave chaos in the miniband semiconductor superlattice coupled to an external resonator. Our analysis shows that the transition to chaos, which is confirmed by calculation of Lyapunov exponents, is associated with the intermittency scenario. The evolution of the laminar phases and the corresponding Poincare maps with variation of a supercriticality parameter suggest that the observed dynamics can be classified as type I intermittency. We study the spatiotemporal patterns of the charge concentration and discuss how the frequency band of the chaotic current oscillations in semiconductor superlattice depends on the voltage applied

    A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    Get PDF
    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current-voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices

    Using acoustic waves to induce high-frequency current oscillations in superlattices

    Get PDF
    We show that gigahertz acoustic waves in semiconductor superlattices can induce terahertz (THz) electron dynamics that depend critically on the wave amplitude. Below the threshold amplitude, the acoustic wave drags electrons through the superlattice with a peak drift velocity overshooting that produced by a static electric field. In this regime, single electrons perform drifting orbits with THz frequency components. When the wave amplitude exceeds the critical threshold, an abrupt onset of Bloch-type oscillations causes negative differential velocity. The acoustic wave also affects the collective behavior of the electrons by causing the formation of localized electron accumulation and depletion regions, which propagate through the superlattice, thereby producing self-sustained current oscillations even for very small wave amplitudes. We show that the underlying single-electron dynamics, in particular, the transition between the acoustic wave dragging and Bloch oscillation regimes, strongly influence the spatial distribution of the electrons and the form of the current oscillations. In particular, the amplitude of the current oscillations depends nonmonotonically on the strength of the acoustic wave, reflecting the variation in the single-electron drift velocity

    Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field

    Get PDF
    We study the effects of dissipation on electron transport in a semiconductor superlattice with an applied bias voltage and a magnetic field that is tilted relative to the superlattice axis. In previous work, we showed that, although the applied fields are stationary, they act like a terahertz plane wave, which strongly couples the Bloch and cyclotron motion of electrons within the lowest miniband. As a consequence, the electrons exhibit a unique type of Hamiltonian chaos, which creates an intricate mesh of conduction channels (a stochastic web) in phase space, leading to a large resonant increase in the current flow at critical values of the applied voltage. This phase-space patterning provides a sensitive mechanism for controlling electrical resistance. In this paper, we investigate the effects of dissipation on the electron dynamics by modifying the semiclassical equations of motion to include a linear damping term. We demonstrate that, even in the presence of dissipation, deterministic chaos plays an important role in the electron transport process. We identify mechanisms for the onset of chaos and explore the associated sequence of bifurcations in the electron trajectories. When the Bloch and cyclotron frequencies are commensurate, complex multistability phenomena occur in the system. In particular, for fixed values of the control parameters several distinct stable regimes can coexist, each corresponding to different initial conditions. We show that this multistability has clear, experimentally observable, signatures in the electron transport characteristics

    Bifurcation phenomena in a semiconductor superlattice subject to a tilted magnetic field

    Get PDF
    The paper studies instabilities of charge transport in strongly coupled semiconductor superlattices with an applied electric and a tilted magnetic field. We reveal the bifurcation phenomena, which are associated with the transitions between different regimes of charge dynamics, and also investigate effects of the temperature on these bifurcations. In addition, we find out that the development of an instability can be accompanied by a graduate change of the dominant transport mechanism

    Lyapunov analysis of the spatially discrete-continuous system dynamics

    Get PDF
    The spatially discrete-continuous dynamical systems, that are composed of a spatially extended medium coupled with a set of lumped elements, are frequently met in different fields, ranging from electronics to multicellular structures in living systems. Due to the natural heterogeneity of such systems, the calculation of Lyapunov exponents for them appears to be a challenging task, since the conventional techniques in this case often become unreliable and inaccurate. The paper suggests an effective approach to calculate Lyapunov exponents for discrete-continuous dynamical systems, which we test in stability analysis of two representative models from different fields. Namely, we consider a mathematical model of a 1D transferred electron device coupled with a lumped resonant circuit, and a phenomenological neuronal model of spreading depolarization, which involves 2D diffusive medium. We demonstrate that the method proposed is able reliably recognize regular, chaotic and hyperchaotic dynamics in the systems under study

    Noise-controlled signal transmission in a multithread semiconductor neuron

    Get PDF
    We report on stochastic effects in a new class of semiconductor structures that accurately imitate the electrical activity of biological neurons. In these devices, electrons and holes play the role of K+ and Na+ ions that give the action potentials in real neurons. The structure propagates and delays electrical pulses via a web of spatially distributed transmission lines. We study the transmission of a periodic signal through a noisy semiconductor neuron. Using experimental data and a theoretical model we demonstrate that depending on the noise level and the amplitude of the useful signal, transmission is enhanced by a variety of nonlinear phenomena, such as stochastic resonance, coherence resonance, and stochastic synchronization
    corecore