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We study the effect of a time-delayed feedback upon a Van der Pol oscillator under the influence
of white noise in the regime below the Hopf bifurcation where the deterministic system has a stable
fixed point. We show that both the coherence and the frequency of the noise-induced oscillations
can be controlled by varying the delay time and the strength of the control force. Approximate
analytical expressions for the power spectral density and the coherence properties of the stochastic
delay differential equation are developed, and are in good agreement with our numerical simulations.
Our analytical results elucidate how the correlation time of the controlled stochastic oscillations can
be maximized as a function of delay and feedback strength.
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I. INTRODUCTION

During the last decade, control of complex irregular dynamics has evolved as one of the central issues in applied
nonlinear science [1, 2]. A particularly simple and efficient scheme based upon delay differential equations has been
applied to deterministic chaotic systems [3]. It uses the difference of a system variable s(t) at time t and the same
variable at a delayed time, s(t − τ), to generate a control force which is coupled back to the system. If the control
parameters are chosen appropriately, an intrinsically unstable periodic orbit (UPO) embedded in the chaotic attractor
can be stabilized (time–delay autosynchronization). In particular, the time delay τ should be chosen equal to the period
T of the target UPO; then the control force vanishes when the target UPO is reached (noninvasive control). This
scheme is simple to implement, quite robust, and has been applied successfully in real experiments. An extension to
multiple time-delays (extended time–delay autosynchronization) has been proposed by Socolar et al [4], and analytical
insight into those schemes has been gained by several theoretical studies [5–8]. Such self–stabilizing feedback control
schemes (time–delay autosynchronization) with different couplings of the control force have been applied to various
classes of deterministic ordinary and partial differential equations, modelling, e.g., semiconductor oscillators [9–15].

In this paper we study the control of stochastic differential equations by time delayed feedback. In contrast to
control of deterministic chaos, the control of noise-induced phenomena is still an open problem. Recently, a number
of methods were suggested for the control of stochastic resonance [16, 17] and of self-oscillations in the presence of
noise [18]. In [19] an external periodic force was proposed for the control of noise-induced oscillations in a pendulum
with a randomly vibrating suspension axis. All methods mentioned above assume the presence of deterministic self-
oscillating components in the dynamics, and aim either to enhance the latter component or to exploit the external
deterministic oscillating force to manipulate the regularity of motion. In contrast to those investigations, a passive
self-adaptive method for the control of oscillations induced merely by noise was proposed only recently [20, 21]. It uses
time-delayed feedback control to change the coherence of the oscillations, and tune their timescale. The method was
applied to two classes of oscillators, namely, a system near a supercritical Hopf bifurcation (Van der Pol oscillator),
and an excitable system (FitzHugh-Nagumo model).

In the present work we study a generic model of a nonlinear oscillator, the Van der Pol oscillator, below the
Hopf bifurcation, i.e. in the regime where the deterministic system has a stable fixed point, and does not oscillate
autonomously. We present numerical and analytical results on control of noise-induced oscillations. Due to the
delay the process described by this equation is essentially non-Markovian, and the powerful methods, like Fokker-
Planck equations suitable for Markovian processes, are not applicable here. At present, the theory of stochastic delay
differential equations is under development, and the methods created so far mostly cover linear and very specific cases
of nonlinear systems [18, 22–28]. Nevertheless, we have been able to obtain some analytical results for the problem
considered here.
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FIG. 1: Numerically simulated phase portraits of noise-induced oscillations of the Van der Pol system at ω0 = 1, ε = −0.01,
D = 0.003: (a) without feedback K = 0; (b) with feedback K = 0.2, τ = T0. In both cases the system was integrated during
300 time units.

II. SIMULATION OF THE NOISY VAN DER POL SYSTEM WITH DELAY

The following dynamic system describes a Van der Pol oscillator with time delayed feedback in the presence of
noise:

ẋ = y

ẏ = (ε − x2)y − ω2
0x + K(y(t − τ) − y(t)) + Dξ(t) (1)

Here ω0 denotes the natural oscillation frequency without feedback, K represents the delayed feedback strength, τ is
the time delay, ξ(t) is Gaussian white noise with zero mean and intensity defined by the parameter D.

〈ξ(t)〉 = 0
〈ξ(t)ξ(t′)〉 = δ(t − t′) (2)

The bifurcation parameter ε governs the dynamics of the system. At K = 0, D = 0 and ε < 0, the system has a stable
fixed point (0, 0) and does not exhibit self-sustained oscillations. At ε = 0 a supercritical Hopf bifurcation occurs,
after which at ε > 0 a stable limit cycle exists in the phase space of the system. In the following we fix ω0 = 1 and
ε = −0.01 at a value slightly below the Hopf bifurcation. In this case the only attractor in the system is a stable
focus. However, inclusion of noise (D > 0) into the system can evoke motion in the phase space that in many respects
resembles noisy oscillations with basic period [29] T0 ≈ 2π/ω0 (see Fig. 1(a)). To quantify the regularity or coherence
of these oscillations we introduce the correlation time tcor as [30]

tcor =
1
σ2

∫ ∞

0

|Ψ(s)|ds, (3)

where

Ψ(s) = 〈(y(t) − 〈y〉)(y(t + s) − 〈y〉)〉 (4)

is the autocorrelation function of y(t), and σ2 = Ψ(0) is its variance. In Fig. 2(a) the dependence of tcor on the noise
intensity is shown by a dashed line. The regularity of the oscillations decreases with increasing noise intensity D. Fig.
2(b) shows the dependence of the basic period T0 of the noise-induced oscillations (determined by the highest peak
in the Fourier power spectrum) upon the noise intensity D. T0 hardly changes with variation of D, which is quite
different, e.g., from the FitzHugh-Nagumo system [20, 21].

To check if the delayed feedback can enhance the regularity of noise-induced motion, we set K = 0.2, and fix
τ = 6.1728 at the value of the basic period T0 of the stochastic oscillations without feedback. For negative ε
perturbations due to noise ξ(t) result in damped oscillations. The phase coherence of these oscillations is characterized
by how many rotations (on average) a phase trajectory can make before collapsing into the fixed point at the origin
and is measured by the correlation time introduced above. Once a phase trajectory comes close to the origin the
coherence is destroyed. The coherence is determined by the effective dissipation in the system: weak dissipation
results in a slow approach of phase trajectories to the fixed point and thus to many rotations, while strong dissipation
leads to fewer rotations. This is illustrated in Fig.1 where we have plotted phase trajectories of Eqs.(1) integrated for



0 0.005 0.01 0.015 0.02

D
0.12

0.16

0.20

T
1

0 0.005 0.01 0.015 0.02

D
0

60

120

180

240

t co
r

(b)

(a)

FIG. 2: (a) Correlation time tcor vs noise intensity D: without delayed feedback, K = 0 (dashed line), and with delayed
feedback with K = 0.2 at τ = T0 (solid line). (b) Basic period vs noise intensity D for K = 0 (T0: dashed line) and for K = 0.2,
τ = T0 (T1: solid line). Numerical simulation.

the same noise intensity with and without delayed feedback control. For K = 0 the phase trajectory comes close to
the origin many times during integration (Fig. 1(a)). For the same length of time the phase trajectory of the system
with delayed feedback never crossed the origin (Fig. 1(b)) which indicates significant enhancement of coherence of
noise-induced oscillations. It is indeed confirmed by the correlation time tcor vs D for K = 0.2 which is shown in
Fig. 2(a) by a solid line. A remarkable increase of coherence is observed for all values of noise intensity. Thus, we
can conclude that delayed feedback can make noise-induced oscillations more ordered if the delay τ matches the basic
period of the oscillations.

More generally, an increase of coherence of noise-induced oscillations is observed if τ is close to T0 or to its integer
multiples. If, however, τ is chosen close to T0(2n − 1)/2 with integer n, the coherence is decreased substantially by
the feedback. The correlation time tcor estimated numerically oscillates as a function of τ , as shown in Fig. 3(a). The
local maxima increase approximately linearly with τ .

In Fig 3(b) the variance 〈F 2〉 of the control force F (t) = y(t− τ)− y(t) estimated numerically is given as a function
of τ by a solid line. Note that the minima of 〈F 2〉 correspond to the maxima of tcor at τ = T0n. That means that
less force is required to control more regular behavior. However, as we expect, in contrast to the deterministic case,
this force never vanishes.

A second important feature of the delayed feedback control is that it allows one to manipulate the timescale of the
noise-induced oscillations. The control parameter that is expected to affect the system timescales is the time delay τ .
To assess the effect of changing τ , we numerically calculate the Fourier power spectral density S(ω) of the stochastic
oscillations, that we will further refer to as spectrum for brevity, for a range of τ . For K = 0.2 and D = 0.003 the
spectra are shown in Fig. 4(a). Without feedback (τ = 0), the spectrum has only one pronounced peak with period
T1 equal to T0. However, as τ increases from zero more peaks appear in the spectrum. For a better illustration of
the spectral properties, we extract all spectral peaks, order them with respect to decreasing heights, denote their
periods as Ti, i = 1, 2, . . . and plot Ti vs τ in Fig. 3(d). The basic period T1 is shown by white circles, while the
other periods Ti, i = 2, 3, . . . are denoted by grey circles. The following features can be observed: (i) the periods Ti

of all peaks change with τ , (ii) the evolution of T1(τ) is almost piecewise linear; (iii) the heights and the widths of
spectral peaks vary as τ changes. The first two observations mean that the delayed feedback entrains the timescales
of noise-induced oscillations: the change in τ results in an almost proportional change in Ti. The third observation
implies that by varying the delay one can control the regularity of oscillations. Fig. 5 shows the spectral peak periods
Ti in dependence on τ for two different strengths of the control force K. While the general behavior remains the
same, the modulation of the timescales with τ becomes stronger with increasing K.
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FIG. 3: Dependence of controlled oscillations in the Van der Pol system on the time delay τ . (a) Correlation time tcor: solid
line - numerical simulation, dashed line - analytic estimation by Eq. (28). (b) Variance 〈F 2〉 of control force F : solid line -
numerical simulation, dashed line - analytic estimation by Eqs. (28) and (31). (c) real parts pi, i = 1, 2, . . . of eigenvalues of
the stable fixed point, grey line marks the largest p1. (d) Circles: peak periods Ti from numerically simulated spectra. White
circles - basic period T1, grey circles - other periods Ti, i = 2, 3, . . .. Dots: peak periods T a

i , i = 1, 2, . . . from the analytically
estimated spectrum given by Eq. (14). Parameters: D = 0.003 and K = 0.2.

Next we study the dependence of noise-induced oscillations upon the control strength K. Fig. 6 shows the correlation
time and the periods T1,2 of the two highest spectral peaks as functions of K. We set D = 0.003 and consider two
values of τ which correspond approximately to a maximum and a minimum of coherence at fixed K = 0.2, respectively:
τ = 6.1728 ≈ T0 (Fig. 6(a),(c)), and τ = 3.3 (Fig. 6(b),(d)). The correlation time increases approximately linearly
with K for optimum τ = 6.1728 ≈ T0, and K not too large (Fig. 6(a), while it sharply drops with K and then remains
at a low level with only very slight increase if τ is chosen close to the minimum coherence (Fig. 6(b)). This means
that the coherence of the oscillations can in fact be considerably enhanced by a stronger control force, e.g. by more
than a factor of 6 for K = 2, if the delay time is carefully adjusted to its optimum value. For τ approximately equal
to the basic period T0 of uncontrolled oscillations, the increase of K does not change the position of the basic spectral
peak with period T1 = T0 (white cirles in Fig. 6(c)). Note that at K ≈ 0.25 another, lower peak appears whose period
T2 (grey circles in Fig. 6(c)) monotonically increases with K. If, however, τ = 3.3 (Fig. 6(d)), T1 remains close to T0

only for a range of K � 0.21. As K is increased further, the basic peak splits into two, with periods T1 and T2. T1

grows monotonically with K, while T2, remaining smaller, tends to coincide with τ for large K.
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FIG. 4: Power spectral density S(ω) of noise-induced oscillations in the Van der Pol system in the presence of delayed feedback
for a range of τ at D = 0.003, K = 0.2. (a) Numerically simulated S(ω) in dependence upon τ . (b), (c), (d) S(ω) for three
different values of τ as given in the figures. Solid line - numerically simulated spectra, shaded - spectra estimated analytically
by Eq. (14). The insets give details of the main spectral peak.
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FIG. 5: Evolution of spectral peak periods Ti of noise-induced oscillations as a function of τ at D = 0.003 for different values
of K: (a) K = 0.1, (b) K = 0.5. Symbols as in Fig. 3(d).
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FIG. 6: Dependence of controlled oscillations in the Van der Pol system on the feedback strength K. (a), (c) τ = 6.1728, (b),
(d) τ = 3.3. (a), (b) Correlation time tcor: solid line - numerical simulation at D = 0.003, dashed line - analytic estimation by
Eq. (24) or (27) with τ = 2π or τ = π, respectively. (c), (d) Circles: peak periods T1,2 from numerically simulated spectra at
D = 0.003. White circles - basic periods T1, grey circles - T2. Dots: peak periods T a

1,2 from the analytically estimated spectrum
given by Eq. (14).

III. ANALYTICAL RESULTS ON TIME-DELAYED FEEDBACK CONTROL

Since the oscillations occur in the vicinity of the fixed point (0, 0) of the system (1), we shall try to gain some
analytical insight by considering the linearized Van der Pol oscillator, including delayed feedback control and noise:

ẋ = y

ẏ = εy − ω2
0x + K(y(t − τ) − y(t)) + Dξ(t) (5)

which can be written as a single stochastic delay differential equation (SDE) of second order:

ẍ − εẋ + ω2
0x − K(ẋ(t − τ) − ẋ) = Dξ(t). (6)

In the absence of noise, D = 0, Eq. (6) can be solved by an exponential ansatz, yielding the characteristic equation
for the complex eigenvalues λ = p + iq of the fixed point (0, 0):

λ2 − λε + ω2
0 − Kλ(e−λτ − 1) = 0 (7)

which can be separated into real and imaginary parts:

α(p, q) ≡ p2 − q2 + ω2
0 − pε + K(p − pe−pτ cos qτ − qe−pτ sin qτ) = 0 (8)

β(p, q) ≡ 2pq − qε + K(q + pe−pτ sin qτ − qe−pτ cos qτ) = 0. (9)

At K = 0, the fixed point is a stable focus for

ε < 0, |ε| < 2ω0. (10)

i.e. it possesses a pair of complex conjugate eigenvalues with real part p = ε/2 < 0 and imaginary parts q =
±

√
ω2

0 − (ε/2)2.
The delayed feedback K > 0 influences the local properties of the fixed point, but does not change its stability for

ε < 0. Note that for negative ε the condition for a Hopf bifurcation, p = 0, q �= 0, cannot be satisfied in (9) for any K
since cos qτ ≤ 1 always holds. This means that a limit cycle is not induced by delayed feedback. However, the delayed



feedback introduces infinitely many complex eigenmodes, which are given by a countable set of eigenvalues whose real
parts pi appear from minus infinity at τ = 0 and always remain negative. These are shown in Fig. 3(c) as a function
of τ . The real part of each eigenvalue depends non-monotonically upon τ , and hence the different branches cross over.
This leads to an oscillatory behavior of the largest real part (highlighted by a grey line in Fig. 3(c)), which will be
denoted by p1. From comparison of Fig. 3(c) with Fig. 3(a) it is evident that the coherence of the noise-induced
oscillations is largest (maxima of the correlation time tcor) when the fixed point is deterministically least stable (i.e.
p1 is closest to zero).

The imaginary parts of the eigenvalues describe the velocity of rotation of the deterministic phase trajectory around
the fixed point that is associated with its ith eigenmode. The corresponding eigenperiods T e

i = 2π/|qi| coincide
remarkably with the spectral peak periods Ti in Fig. 3(d) as shown in [20, 21]. The jumps in the dominant spectral
peak periods T1 as a function of τ (Fig. 3(d)) can now be explained by the crossover of the different branches of pi

in Fig. 3(c): at the point of intersection, another eigenmode becomes the least stable, and the associated eigenperiod
T e

i determines the corresponding spectral peak which becomes the highest one.
For p ≈ 0 and |ε| � K it follows from eq. (9) that cos qτ ≈ 1 and qτ ≈ 2πn with integer n. Then the eigenperiod

T e
1 is

T e
1 = 2π/|q1| ≈ τ/n. (11)

Eq. (11) holds the better, the closer p1 is to zero. This explains the almost piecewise linear behaviour of the basic
periods T1 in Figs. 3(d) and 5 at large τ , at which the condition p1 ≈ 0 holds more accurately (Fig. 3(c)).

Next we shall explore the spectral properties of the linearized Van der Pol oscillator under control and noise.
Consider the Fourier transform of (6) which can be expressed as

x̂(ω) =
Dξ̂(ω)

ω2
0 − ω2 + iωε + iωK(eiωτ − 1)

(12)

where x̂(ω) and ξ̂(ω) denote the Fourier transforms of x(t) and ξ(t), respectively. Using ŷ(ω) = −iωx̂(ω) and
〈ξ̂(ω)ξ̂∗(ω′)〉 = δ(ω − ω′)/(2π) by eq.(2), we can obtain the power spectral density S(ω) of y, applying the Wiener-
Khinchin theorem [31]

〈ŷ(ω)ŷ∗(ω′)〉 = δ(ω − ω′)S(ω) (13)

It yields

S(ω) =
D2

2π

ω2

(ω2 − ω2
0 + ωKsin(ωτ))2 + ω2(ε − K(1 − cos(ωτ))2

. (14)

The power spectral density (14) of the linearized oscillator is connected with the linear modes (8), (9) of the free
running oscillator by setting p = 0, q = −ω. S(ω) may be viewed as the transfer function which converts the flat
white noise input into a spectrally modulated output by amplifying certain modes of the noise. Eq. (14) has the form

S(ω) =
D2

2π

ω2

α(0,−ω)2 + β(0,−ω)2
, (15)

A Hopf bifurcation (α(0,−ω) = β(0,−ω) = 0) leading to the birth of a limit cycle would correspond to a pole of the
power spectral density at the corresponding frequency of self-oscillation, but as we have shown above, this cannot
occur for ε < 0. However, those eigenmodes which are least stable, i.e. which have smallest |p|, correspond to maxima
of S(ω) and can thus be excited by noise. This explains why the basic periods in Fig. 3(d) match nicely with 2π/q
of the linear modes p + iq [20, 21].

For weak noise D, the power spectral density S(ω) of the linear oscillator (14) is in excellent agreement with that
of the nonlinear Van der Pol oscillator obtained from our simulations (Fig. 4). The basic periods T a

i calculated from
the maxima of (14) as a function of τ coincide with Ti in Figs. 3(d), 5.

In order to gain analytical insight into the dependence of the coherence properties upon the control parameters,
we will derive simple analytical approximations from (14) in the following. First consider the case K = 0. Eq. (14)
reduces to a Lorentzian

S(ω) =
D2

2π

ω2

(ω2 − ω2
0)2 + ω2(2Γ)2

(16)



with peak frequency ω0 and approximate half-width Γ = −ε/2. This, by inverse Fourier transform according to the
Wiener-Khinchin Theorem, for |ε| � ω0 approximately leads to the normalized autocorrelation function [30]

Ψ(s)
σ2

= e−
|ε|
2 s cos (ω0s) (17)

The correlation time

tcor =
∫ ∞

0

e−
|ε|
2 s| cos (ω0s)|ds (18)

can be evaluated approximately for |ε| � ω0 by substituting the cos term by the filling factor 1
π

∫ π/2

−π/2 cosφdφ = 2/π,
which yields

tcor =
2
π

∫ ∞

0

e−
|ε|
2 τdτ =

4
π|ε| (19)

It describes the behavior for small noise intensity D and is in good agreement with the numerical results from the
nonlinear simulations of the Van der Pol system in Fig. 2(a), i.e., tcor ≈ 127 for ε = −0.01, ω0 = 1.

For K �= 0 Eq. (14) describes the power spectral density with multiple peaks. A very rough estimate of the position
and width of the dominant spectral peak can be obtained for |ε| � ω0, K � 1 by replacing ω with ω0 in the resonant
terms in the denominator of (14). This means that the spectral width is modulated as

2Γ = −ε + K(1 − cosω0τ ) (20)

and the correlation time is modulated as

tcor =
4

π(−ε + K(1 − cosω0τ ))
(21)

This crude approximation correctly describes the periodic oscillations in the correlation time as a function of τ ,
with minima at τ = π

ω0
(2n − 1) and maxima at τ = 2π

ω0
n ≈ T0n with integer n as numerically found, see Fig. 3(a),

but it does not correctly describe the absolute values of the coherence maxima at τ ≈ T0n, i.e., it does not yield
the enhancement of the correlation time by delayed feedback. In order to quantify the enhancement of coherence we
consider the optimum values of delay time, i.e. τ = 2π

ω0
n and expand the power spectral density (14) for ω = ω0(1+δ),

δ � 1 around ω0, assuming a narrow spectral width of the dominant peak.
With sin (ωτ) ≈ ω0τδ and cos (ωτ) ≈ 1 − 1

2 (ω0τδ)2 we obtain

S(ω) =
D2

2π

ω2

(ω2 − ω2
0 + ωKω0τδ)2 + ω2(ε − K

2 (ω0τδ)2)2
(22)

Expressing S(ω) in terms of δ up to lowest order yields

S(ω) =
D2

2π

ω2
0(1 + δ)2

[ω2
0 ((1 + δ)2 − 1 + (1 + δ)δKτ)]2 + ω2

0(1 + δ)2(ε − K
2 (ω0τδ)2)2

=
D2

2π

ω2
0(1 + δ)2

(1 + K
2 τ)2 [ω2

0 ((1 + 2δ + O(δ2) − 1)]2 + ω2
0(1 + δ)2 [ε + O(δ2)]2

=
D2

2π(1 + K
2 τ)2

ω2

[ω2 − ω2
0 ]

2 + ω2
[

ε
1+ K

2 τ

]2 (23)

This is a Lorentzian with peak frequency ω0 and half-width Γ = 1
2 |ε|/(1 + K

2 τ). Therefore the correlation time at
optimum coherence τ = 2π

ω0
n at low noise is

tcor =
4

π|ε| (1 +
K

2
τ) (24)

This constitutes an enhancement of coherence by time-delayed feedback by a factor of 1 + K
2 τ , which is in excellent

agreement with the simulations in Fig. 2(a), yielding, e.g., a factor of 1.62 or tcor ≈ 206 for K = 0.2, τ ≈ 2π,



ε = −0.01. The dependence of tcor upon K described by Eq. (24) is shown by a dashed line in Fig. 6(a). Note that
for large K or τ the lowest order expansion is not adequate, and the approximation breaks down.

For minimum coherence, i.e. τ = π
ω0

(2n−1), a similar expansion of the power spectral density (14) for ω = ω0(1+δ),
δ � 1 can be performed with sin (ωτ) ≈ −ω0τδ and cos (ωτ) ≈ −1 + 1

2 (ω0τδ)2:

S(ω) =
D2

2π

ω2

(ω2 − ω2
0 − ωKω0τδ)2 + ω2

[
ε − K(2 − 1

2 (ω0τδ)2)
]2 (25)

Expressing S(ω) in terms of δ up to lowest order yields

S(ω) =
D2

2π(1 − K
2 τ)2

ω2

[ω2 − ω2
0 ]

2 + ω2
[

ε−2K
1−K

2 τ

]2 (26)

This is a Lorentzian with peak frequency ω0 and half-width Γ = 1
2

|ε|+2K

|1−K
2 τ | . Therefore the correlation time at

minimum coherence τ = π
ω0

(2n − 1) at low noise is

tcor =
4
π

|1 − K
2 τ |

|ε| + 2K
(27)

which describes the slow increase of the minima as a function of τ > 2/K, and the sharp drop with initial slope
−8/(π|ε|2) at K = 0 and the very slight increase at a low level for K > 2/τ as a function of K (see dashed line in
Fig. 6(b)), in very good agreement with the numerical results.

Combination of Eqs. (24) and (27) with (21) yields an improved formula for continuous values of τ (dashed line in
Fig. 3(a)):

tcor =
4

π(−ε + K(1 − cosω0τ))
|1 +

K

2
τ sign(cos ω0τ)| (28)

The Lorentzian approximation of the power spectral density also allows for a qualitative explanation of the τ -
dependence of the variance of the control force F (t) = y(t − τ) − y(t)

〈F 2〉 = 2(〈y2〉 − 〈y(t)y(t − τ)〉) (29)
= 2(σ2 − Ψ(τ)) (30)
≈ 2σ2(1 − e−Γτ cosω0τ ) (31)

where 〈y〉 = 0 has been used in (30) and σ2 =
∫ ∞
−∞ S(ω)dω depends upon τ and K through the power spectral density

(14).
The autocorrelation function Ψ correctly describes the damped oscillations of 〈F 2〉 = 2(σ2 −Ψ(τ)) as a function of

τ , eq. (30), with minima at τ = 2π
ω0

n at values given by

〈F 2〉 = 2σ2(1 − e−Γτ ) (32)

with Γ = 1
2

|ε|
1+ K

2 τ
. They correspond to maxima of tcor.

The maxima of the control force are also predicted at the correct positions τ = π
ω0

(2n − 1), and their values are
given by

〈F 2〉 = 2σ2(1 + e−Γτ ) (33)

with Γ = 1
2

|ε|+2K

|1−K
2 τ | . They correspond to minima of tcor.

Combining these results we obtain an approximate expression for the variance of the control force (31) as a function
of τ (τ �= 2/K) with the envelope decay constants determined by

Γ(τ) =
1
2

|ε|
1 + K

2 τ
Θ(cosω0τ) +

1
2
|ε| + 2K

|1 − K
2 τ |Θ(− cosω0τ ) (34)

with the Heaviside function Θ(z). A rough analytical approximation with constant σ2 is shown as a dashed line
in Fig. 3(b); it neglects the variation of σ2 with τ , and furthermore the decay constant of the minima (32) gives
too small values, but the qualitative features of the numerical result are reproduced. This approximation can be
improved by evaluating σ2(τ, K) using a Lorentzian for S(ω), in particular for small K, but note that the Lorentzian
approximation in (31) introduces a large error for most values of τ , cf. e.g. Fig. 4(b).



IV. CONCLUSION

We have investigated a self-adaptive method for controlling stochastic oscillations by a delay in the form of the
difference between the delayed and the current values of a system variable. As a specific example of a nonlinear oscil-
lator we have considered the Van der Pol system close to but below the Hopf bifurcation, where the only deterministic
attractor is a stable fixed point. The coherence and the time scales of the noise-induced oscillations can be controlled
by appropriately adjusting the control parameters τ (delay) and K (feedback strength). An analysis of the linear
modes of the fixed point and the spectral properties of the linearized differential equation has elucidated the control
mechanism. We have complemented our numerical investigations by a theory which allows us to predict analytically
the dependence of the correlation time and the variance of the control force upon τ , K, and the system parameters,
and thus, e.g., optimize the coherence. The oscillatory behavior of the correlation time (which can be substantially
increased or decreased depending upon the delay), and the entrainment of the basic oscillations period as a function
of τ is correctly described within this framework.
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[13] N. Baba, A. Amann, E. Schöll, and W. Just, Phys. Rev. Lett. 89, 074101 (2002).
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