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Abstract

The spatially discrete-continuous dynamical systems, that are composed of
a spatially extended medium coupled with a set of lumped elements, are fre-
quently met in different fields, ranging from electronics to multicellular struc-
tures in living systems. Due to the natural heterogeneity of such systems, the
calculation of Lyapunov exponents for them appears to be a challenging task,
since the conventional techniques in this case often become unreliable and
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inaccurate. The paper suggests an effective approach to calculate Lyapunov
exponents for discrete-continuous dynamical systems, which we test in sta-
bility analysis of two representative models from different fields. Namely, we
consider a mathematical model of a 1D transferred electron device coupled
with a lumped resonant circuit, and a phenomenological neuronal model of
spreading depolarization, which involves 2D diffusive medium. We demon-
strate that the method proposed is able reliably recognize regular, chaotic
and hyperchaotic dynamics in the systems under study.

Keywords: Lyapunov exponents, dynamical chaos, spatially extended
system, system with the small number of degrees of freedom, numerical
simulation, microwaves, reaction-diffusion model, spreading depression

1. Introduction

It is quite common in complexity science, when a spatially extended media
with infinitely many degrees of freedom interacts with a dynamical system
localized in space and having a finite number of degrees of freedom. The
mathematical models of such discrete-continuous systems (DCS) are com-
posed of partial differential equations (PDEs) coupled with ordinary differ-
ential equations (ODEs).

The models that fall to the class of discrete-continuous systems arise in
many applications from different research fields ranging from life sciences to
information processing and electronics. Incomplete list of such problems in-
cludes modeling of drug delivery to biological tissues [1], neural dynamics [2],
mitochondrial swelling [3], intracellular signaling [4], cortical spreading de-
pression [5], quantum information processing [6], active semiconductor media
interacting with discrete elements [7], lumped circuits coupled to a transmis-
sion line [8], multiscale continuum mechanics [9].

The similar class of model systems appears in the number of biophysi-
cal problems, where the hemodynamics, which is often described by Navier-
Stokes PDEs, is considered together with the time-variable system-wide quan-
tities, e.g., the blood pressure or electrocardiography (ECG) [10, 11].

Due to the importance of the spatially discrete-continuous models for the
different research fields, the specialized solution algorithms were developed
(e.g. [12]). However, there is a clear shortfall of the tools available for sta-
bility analysis of such dynamical systems. DCSs are often analysed with the
help of methods, developed for systems with finite number of the degrees of
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freedom. In this context the original spatially-distributed subsystem can be
described by the set of ODEs based on lattice model [13] or Laplace transform
method [14]. In electronics the dynamics of DCSs are often analysed by the
consideration of the subsystems with finite number of the degrees of freedom
and spatially-extended subsystem separately [15, 16]. These approaches, ob-
viously, have their specific limitations. In particular, transition to the lattice
model can potentially affects the system dynamics in an unpredictable way
[13], while the consideration of the dynamical regimes taking place in finite-
dimensional subsystem may not reflect the key features of spatiotemporal
behaviour of spatially extended subsystem [17].

The most promising approach for the stability analysis of DCSs is based
on the calculation of Lyapunov exponents (LEs). The use of such tool
makes the significant progress in study of the finite-dimensional flow sys-
tems [18, 19], discrete maps [20] and timeseries [21] (including the cases with
the presence of noise, see, e.g, [22]). In recent works Lyapunov exponents
are applied for analysis of non Hermitian Hamiltonian systems [23] and neu-
ral systems [24]. In the case of spatiotemporal dynamics the calculation of
LEs is more complicated [25, 26]. At the same time, the recent results on
Lyapunov analysis of the extended media, described within the framework
of hydrodynamic approximation has shown a great potential of this tech-
nique for the quantitative assessment of chaotic behavior [26, 27], detection
of hyper-chaotic regimes [28] and identification of the synchronous modes in
coupled spatially extended elements [28] as well as networks of interacting
spatially extended units [29, 30].

It should be noted, the existent methods of the LEs calculation either
for the finite-dimensional systems [31] (such as flows or maps) or spatially
extended media [28] cannot be directly applied to DCSs, i.e., to the systems
consisting of both the spatially extended and concentrated in space subsys-
tems. The main problem here is that the reference states of such systems
are determined simultaneously by two significantly different types of vari-
ables, namely, by the variables depending only on time (which correspond
to the finite dimensional subsystems) and by the functions which depend
both on time and space coordinates (they represent the spatially extended
subsystems). This makes impossible the straightforward implementation of
the normalization and orthogonalization procedures, developed for the finite
dimensional [31] and spatially-extended [28] systems and, as the results, the
accurate estimation of Lyapunov exponents.

In the present paper we introduce an approach allowing to calculate the
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spectrum of LEs for discrete-continuous dynamical systems. In order to
illustrate the universality and capability of the proposed method as well as
its relevance, we apply the developed approach to analyze the stability of
dynamical regimes in two radically different exemplary DCS that came from
different research fields.

First, we perform the Lyapunov stability analysis of the charge dynam-
ics in a finite-dimensional dynamical circuit, where a spatially extended 1D
media is included as an nonlinear element [7]. The latter is described by a
set of the coupled Poisson and continuity equations, whereas the circuit is
described with the help of non-stationary Kirchhoff equations.

Next, we consider an example from different research area. Namely, we
analyze the dynamics of a phenomenological model of spreading depolariza-
tion [5], that is composed of a set of FitzHugh-Nagumo (FHN) oscillators
(model neurons) coupled through 2D diffusive media that describe the ex-
tracellular spreading of depolarizing substances.

In both cases the Lyapunov analysis allowed us to reveal and quantify
the transitions between the regular and chaotic dynamics with variation of
the control parameters.

The paper has the following structure. The approach to calculation of the
spectrum of LEs for DCS is described in Sec. 2. The dynamics of the RLC-
circuit connected with the semiconductor transferred electron device (TED)
is described and analyzed in Sec. 3. Sec. 4 is devoted to the Lyapunov
stability analysis of the model of the spreading depolarization. The final
remarks and conclusions are given in Sec. 5.

2. Calculation of the Lyapunov exponents for spatially discrete-
continuous systems

Let us consider an arbitrary DCS, which is described by a set of coupled
PDEs and ODEs. The state of the spatially extended medium modeled by
PDEs is supposed to be defined by N variables, each being a function of both
the displacement vector r and time t

Φ1(r, t),Φ2(r, t), . . . ,ΦN−1(r, t),ΦN(r, t),

r ∈ RD, 0 ≤ t ≤ ∞,
(1)

D is the dimension of the space (in our study D = 1 for the system considered
in Sec. 3 and D = 2 for the discrete-continuous model of the spreading
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depression discussed in Sec. 4). The variables depending only on time

Θ1(t),Θ2(t), . . . ,ΘM−1(t),ΘM(t), 0 ≤ t ≤ ∞. (2)

describe the state of the subsystems with M/2 degrees of freedom defined by
ODEs.

In order to characterize the stability of the DSC dynamics, one has
to trace the evolutions of the system state (in our case it is U(r, t) =
(Φ1(r, t), . . . ,ΦN(r, t),Θ1(t), . . .ΘM(t))T ) and analyse how a linear pertur-
bation of this state changes with time. However, this procedure for the case
when state variables depend only on time [31, 32] is significantly different
from the case, when the state variables depend both on time and displace-
ment [27, 28]. In our situation we deal with a mix of two type of the variables
mentioned above, which prevents a direct application of the convention rou-
tines. To overcome this conceptual obstacle, we propose to consider the
variables (2) as the spatially extended ones, i.e.,

Ψk(r, t) = Θk(t), k = 1,M. (3)

In this case the state of the spatially discrete-continuous system may be
considered as

U(r, t) = (Φ1(r, t), . . . ,ΦN(r, t),Ψ1(r, t), . . . ,ΨM(r, t))T , (4)

and the evolution operator
L̂(U(r, t)), (5)

determines the spatiotemporal behavior of the system state. This evolution
operator consists typically of coupled ordinary differential equations and par-
tial differential equations determining the evolution of localized in space sub-
systems and spatially extended media, respectively. E.g., for the RLC-TED
circuit considered in Sec. 3 the evolution operator (5) consists of ODEs (19)
and PDEs (20)–(21) with the boundary conditions (24). Assume that r = x
in the case of D = 1, r = (x, y) when D = 2 and r = (x, y, z) for D = 3.

The numerical algorithms for the LE calculation are usually based on
the analysis of the perturbation V(r, t) of the reference state U(r, t) and
the calculation of the increment/decay rate. To estimate the K largest Lya-
punov exponents Λi, i = 1, . . . , K, one has to consider a set of orthogonal
perturbations Vi(r, t), i = 1, . . . , K. In this case, the Lyapunov exponents
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characterize the exponential growth/decay of K orthogonal modes of U(r, t).
Each perturbation Vi(r, t) is defined as

Vi(r, t) = (φ̃i
1(r, t), . . . , φ̃

i
N(r, t), ψ̃i

1(r, t), . . . , ψ̃
i
M(r, t))T , i = 1, K (6)

assuming that all ψ̃i
k(r, t) depend only on time, i.e.,

ψ̃i
k(r, t) ≡ θ̃ik(t), ∀k, ∀i. (7)

The perturbations introduced must initially be orthogonal and normalized.
The orthogonality condition reads

(Vi(r, 0),Vj(r, 0)) =

{
1, i = j,

0, i 6= j.
(8)

where the brackets (·, ·) denote the scalar product

(Vi(r, t),Vj(r, t)) =

=



∫
L

(
N∑
l=1

φ̃i
l(x, t)φ̃

j
l (x, t)

)
dx+

+

∫
L

(
M∑
l=1

ψ̃i
l(x, t)ψ̃

j
l (x, t)

)
dx, if D = 1,

∫∫
S

(
N∑
l=1

φ̃i
l(x, y, t)φ̃

j
l (x, y, t)

)
dx dy+

+

∫∫
S

(
M∑
l=1

ψ̃i
l(x, y, t)ψ̃

j
l (x, y, t)

)
dx dy, if D = 2.

(9)

Due to Eq. (7) the integral of the second term in Eq. (9) is∫
L

(
M∑
l=1

ψ̃i
l(r, t)ψ̃

j
l (r, t)

)
dr = L×

M∑
l=1

θ̃il(t)θ̃
j
l (t), (10)

and, therefore, Eq. (9) may be considered as the sum of the weighed Euclidean
scalar product for the discrete part and the scalar product for the continuous
part of the state space.
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The normalization means that

||Vi(r, tr)|| = 1, (11)

where ||Vi|| =
√

(Vi,Vi), and tr are the time moment, when the normaliza-
tion is required. The set of the perturbations Vi(r, t), i = 1, K, which fulfill
the requirements of Eqs. (8) and (11) at t = tr can be built with the help of
the Gram-Schmidt procedure

V̂1(r, tr) = ϕ1(r) (12)

V̂i+1(r, tr) = ϕi+1(r)−

−
i∑

k=1

(Vk(r, tr), ϕi+1(r))Vk(r, tr) (13)

i = 1, 2, . . . , K − 1;

Vi(r, tr) =
V̂i(r, tr)

||V̂i(r, tr)||
(14)

i = 1, 2, . . . , K.

Here V̂1(r, tr), V̂2(r, tr), . . . , V̂K(r, tr) generate a system of orthogonal vec-
tors, while ϕ1(r), ϕ2(r), . . . , ϕK(r) are the auxiliary functions, which are
chosen arbitrary for the initial moment of time.

The evolution of the perturbations is described by the operator (5) lin-
earized in the vicinity of the reference state

∂L̂(U(r, t),Vi(r, t)). (15)

Again, the linearized evolution operator (15) should be obtained with the help
of the linearization of the ODEs and PDEs being the constituent subunits of
the initial evolution operator (5).

In order to find the LEs spectrum, one needs to follow the time evo-
lution of both the reference state U(r, t) and its perturbations Vi(r, t) (i =
1, 2, . . . , K) by the self-consistent integration of Eqs. (5) and (15). With this,
the Gram-Schmidt procedure (12)–(14) should be periodically applied over
a certain time period Γ (see Ref. [32]) at time moment tr = jΓ (j = 1, . . . , I)
with newly defined set of functions

ϕi(r) = Vi(r, tr). (16)
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After the sufficiently large number, I, of such repetitions the perturbations
Vi(r, tr) taken after orthogonalization [Eqs. (12) and (13)] but before renor-
malization [Eq. (14)] are used to find Lyapunov sums

Si =
I∑

j=1

ln ||V̂i(r, jΓ)||, (17)

which yields LEs as

Λi =
Si

IΓ
. (18)

Summarizing the formalism given above, Lyapunov exponents for spa-
tially discrete-continious dynamical systems can be calculated using the fol-
lowing algorithm:

1. determination of the system reference state U(r, t) in form given be
Eq. (4), where the set of variables Θk(t) (see Eq. (2)) uniquely describes
the state of the subsystem with the finite number of degrees of freedom
and variables Φk(r, t) (1) describe the state of the spatially-extended
subsystem;

2. determination of the small perturbations Vi(r, t) of the system state in
the form of Eq. (6);

3. obtaining equations, which describe the spatio-temporal evolution of
the small perturbations, Vi(r, t), by the linearization of the equations
(in the vicinity of the reference state, U(r, t)), describing the system
state evolution;

4. realization of Gram-Schmidt procedure (12) – (14) for generating a
system of orthogonal perturbations Vi(r, t) with |Vi(r, t)| = 1.0;

5. implementation of the algorithms for numerical simulation of the evo-
lution of system state U(r, t) with the set of perturbations Vi(r, t);

6. sequential repetition of steps 4 and 5 with Lyapunov sums (17) calcu-
lation;

7. Lyapunov exponents calculation according to Eq. (18).

This algorithm can be applied to the mathematical models from different
fields of science. In the next sections of the paper we apply the proposed
algorithm to fundamentally different DCSs, namely, the electronic [Sec. 3]
and neural [Sec. 4] systems, for which the reference system state U(r, t) is
described by the set of variables, part of which depend on time, while others
depend on time and spatial coordinate.
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3. Chaos in RLC-TED Circuit

First, we have applied the proposed approach to a practical example of
electronic systems (a two-terminal transferred electron device (TED) coupled
with a RLC-circuit). Here, the TED plays a the role of a 1D nonlinear active
medium, while the RLC-circuit is a dynamical system with a finite number
of degrees of freedom. Figures 1 a,b present the equivalent electric circuit of
this device, where TED is represented by a nonlinear resistor (Fig. 1 b). The
time-depended current through this resistor I(VTED) is generated in response
to the voltage VTED applied across two terminals of the TED. Variables V1
and I1 are the voltage drop across the capacitor and the current through the
inductor, respectively, R = 17 Ω is the resistance of the circuit. The values
of the capacitance C and the inductance L are the adjustable parameters of
the circuit, V0 is the dc bias, which we use as the main control parameter of
the model under study.

3.1. Model

The circuit in Figs. 1 a,b can be described by ODEs based on the Kirchhoff
rules.

dV1
dt

=
I(VTED)− I1

C
,

dI1
dt

=
V1 −RI1

L
,

VTED = V0 − V1.

(19)

From physical point of view Eqs. (19) can be understood as a mathe-
matical model of a TED interacting with an external single-mode resonator,
whose the eigenfrequency fQ and the quality factor Q are determined as

fQ = 1/(2π
√
LC) and Q = (1/R)

√
L/C, respectively.

We consider realistic circuit parameters evaluated from the recent exper-
iments with superlattice coupled with a resonant circuit [7].

As a mathematical model of TED we consider the self-consistent system of
the one-dimensional current continuity and the Poisson equation, which are
used widely to describe charge transport processes in solid state and plasma
physics, including Pierce beam-plasma system [33], non-neutral plasma [34],
simple plasma diodes [35, 36], semiconductors [37, 38], organic field-effect
transistors [39], etc. Such model was shown to demonstrate a variety of non-
linear phenomena including developing instabilities of electron transport in
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Figure 1: (a) The equivalent circuit of the finite-dimensional system represented by the
RLC-circuit coupled with (b) the spatially extended active element represented by the
transferred electron device. I1(t) and V1(t) are the current and the voltage in the circuit.
(c) The current-voltage characteristic of this element without (curve 1) and with (curve
2) external circuit. The control parameters of the circuit are fQ = 13.81 GHz,Q=150

Pierce diode [40] and semiconductor structures [37], developing of turbulence
[41] and bifurcations in plasma drift waves [42, 43].

As an example of a TED we consider a miniband semiconductor super-
lattice which has been proposed in works [44, 45] and has became a classical
model for analysis of nonlinear phenomena of charge transport [46]. For this
type of TED the model equations have a form

∂n

∂t
= −1

e

∂J

∂x
, (20)

∂F

∂x
=

e

ε0εr
(n− n0), (21)

where e > 0 is the absolute value of electron charge, n and J are charge
and current densities, respectively, and F is an electric field strength. The
values of relative permittivitie εr = 12 and the equilibrium volume density
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of charge carriers n0 = 3 × 1022 m−3 correspond to realistic devices[47, 48].
The current density is estimated as

J(x, t) = en(x, t)vd(F (x, t)), (22)

and the drift velocity is calculated using the Esaki-Tsu formula [44]

vd(F (x, t)) = α
βF (x, t)

1 + (βF (x, t))2
. (23)

For our model we define α = 5.6× 104 m/s and β = 3.15× 10−6 mV−1. The
voltage VTED(t) dropped along the TED device of length L = 100 nm deter-
mines the boundary condition

VTED(t) =

L∫
0

F (x, t) dx. (24)

Figure 1, c shows the current voltage characteristics of the autonomous
superlattice (dashed curve 1), when VTED is constant, and for the case, when
superlattice is coupled with the resonant circuit (solid curve 2). They were
calculated by averaging the stationary (taken after some relaxation) current
I(t) over time. In the case of the autonomous superlattice the current-voltage
characteristic demonstrates a rise-and-fall shape, where the descending part
of the curve is associated with appearance of periodic current self-oscillations
caused by traveling charge domains [38]. Coupling to the resonant circuit
significantly modifies this part of the current-voltage characteristics by gen-
eration of a series of additional peaks. Previously it was shown that these
features relate to the development of additional instabilities in the system,
which can lead to emergence of chaos [7, 49].

3.2. Lyapunov Analysis

According to step 1 of the algorithm (see. Sec. 2), the state of the model
considered in Subsection 3.1 can be defined by a vector

U(x, t) = (n(x, t), I(x, t), V (x, t))T , (25)

where component n(x, t) unambiguously determines the state of the medium (20)
– (22) [28, 27], and variables I(x, t) = I1(t), V (x, t) = V1(t), ∀x ∈ [0,L] char-
acterize the state of the RLC-circuit.
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To calculate the spectrum of K highest Lyapunov exponents, in agree-
ment with step 2 of the algorithm we use the set of the small perturbations

Vi(x, t) = (ñi(x, t), Ĩi(x, t), Ṽi(x, t))
T , i = 1, K. (26)

According to the step 3 of the algorithm (see. Sec. 2) time evolution of
the introduced perturbations is govern by the linear operator (15), which is
defined by a set of linear ODEs

dṼi
dt

=
Ĩ(ṼTED)− Ĩi

C

dĨi
dt

=
Ṽi −RĨi

L

ṼTED = −Ṽi

(27)

and PDEs
∂ñi

∂t
= −1

e

∂J̃i
∂x

∂F̃i

∂x
=

e

ε0εr
(ñi)

J̃i = eñivd(F ) + en
dvd(F )

dF
F̃i

L∫
0

F̃i dx = ṼTED,

(28)

derived by linearization of Eqs. (19)–(24).
The set of perturbations (26) has been obtained with the help of Gram-

Schmidt procedure (step 4). Following step 5 of the algorithm (see. Sec. 2) we
have applied the numerical simulation of the Eqs. (19)–(24) which describe
evolution of system state with Eqs. (27)–(28) describing the development of
small perturbations.

First, to demonstrate the effectiveness of the proposed technique, we con-
sider the charge dynamics in the system for two representative values of V0,
namely V0 = 0.45 V and V0 = 0.86 V.
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The results of numerical calculations for V0 = 0.45 V are presented in
Fig. 2. Figure. 2, a displays the dependencies of the five largest LEs on
time, illustrating the convergence of the method. For this dependence the
exponents were calculated (steps 6 and 7) using Eq. (18) for different time
intervals t = IΓ, where I = 1, 2, ... and Γ = 125 fs. Being unstable for small t,
after t ≈ 20 ns the values of the LEs are stabilized with the largest exponent
approximately equal to zero, which predicts a periodic character of charge
dynamics for the given V0. To verify this, we plot realisation of the medium
state variable n(x, t) (Fig. 2, b) and the variable V1(t) characterizing the cir-
cuit (Fig. 2, c). One can see that the charge redistribution in the TED is
associated with periodically travelling charge domains (areas of high concen-
tration of charge), which cause regular oscillations of the voltage drop V1(t).
These oscillations are characterised by a discrete spectrum consisting of a
number of harmonics (Figure. 2, d). Thus, the periodic behaviour predicted
by the calculations of the Lyapunov exponents is completely confirmed by
analysis of the dynamical patterns in the system.

The behaviour of the LEs changes for V0 = 0.86 V. Now, convergence of
the Lyapunov exponents takes a longer time, t ≈ 60 ns (compare Fig. 3,
a and 2, a). After the transient time the largest LE has the positive value,
while the second largest exponent converges to zero. Such spectrum of the
exponents indicates the presence of chaotic dynamics. This fact is reflected in
irregular pattern in spatio-temporal dynamics of charge along SL displayed
in Fig. 3, b, and in aperiodic character of V1(t) oscillations presented in Fig.
3, c. The continuous spectrum of these oscillations (see Fig. 3, d) provides
an additional evidence of chaos developed of the system.

Thus, the method is shown to be is able to distinguish regular and chaotic
dynamics in the model under study. The calculations of LEs performed for
a wide range of different values V0 revealed that a reliable estimation of LEs
requires minimum I = 106 Gram-Schmidt iterations. Therefore, this number
I is used in our further analysis.

Next, we study how variation of the bias voltage V0 and the resonant
frequency of the RLC- circuit fQ affects the stability of the system. The
dependencies of four largest LEs on V0 for fixed fQ = 13.81 GHz (selected
according to the experimental work [7]) are shown in Fig. 4, a.

For low V0 < 0.35 V, all LEs have negative values, revealing the equi-
librium state in the system. With increase V0 the largest LE becomes zero
indicating a transition to periodic dynamics. Further growth of V0 leads to
appearance of a positive LE at V0 = 0.504 V, which corresponds to onset a
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chaos is the system. This chaotic regimes is changed by periodic dynamics at
V0 = 0.521 V. In general, within the bias voltage range 0–0.8 V the Lyapunov
analysis reveals few regions of chaos highlighted by grey shadow in Fig. 4, a.
One can see that the appearance of the chaotic regimes corresponds to the oc-
currence of additional peaks in the current-voltage characteristic (solid curve
in Fig. 1, c). Figure 4, b shows four largest LE in dependence on fQ, chang-
ing between 10 and 20 GHz. Although the dominant dynamics is periodic,
i.e characterised by zero largest LE, the graphs reveal the regions of chaos,
where the largest LE becomes positive. Thus, this analysis shows that ei-
ther changes V0 or fQ can induce the chaotic dynamics in the system, which
potentially can be used in practical applications [50].

4. Spreading Depolarization Model

Here, we apply our method to more complex DCS, where a number of dis-
crete components are spread across a 2D continuous medium. As an example
we consider a simplified model, which describes dynamical mechanisms un-
derlying the extreme physiological behaviors in brain cortex, such as spread-
ing depression [51], migraine waves [52], and peri-infarct depolarization waves
[53].

The essential feature of listed phenomena is the drastic changes in neu-
ron activity, supported by the massive redistribution of ions in extracellular
space, so called “volume transmission” [54]. The later, speaking in physical
terms, is provided by the diffusion in porous medium. While this diffusion
process by its nature falls to the class of continuous-media problems, the pat-
tern of neuronal activity is formed by the discrete set of cells, each possesses
their own dynamics. Thus, one arrive to specific form of DCS model, where
the discrete set of active units is embedded in continuous medium.

4.1. Model Equations

At a very simple level, a population of neurons coupled via the extra-
cellular space can be modeled by means of one-component reaction-diffusion
system connected with the discrete set of excitable units [55, 13]. The for-
mer describes the spatial spreading of depolarization substances (potassium,
glutamate) in extracellular space, while the later stands for the activity of
neuronal population. In [55], such a model was implemented with a set of
FitzHugh-Nagumo (FHN) model neurons, that are placed in the nodes of
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2D space grid, and coupled with each other through the continuous diffu-
sive medium. Each model neuron is assumed to be located at specific point
rij = (xi, yj), xi = ihx, yj = jhy and its dynamics is described by the ordi-
nary differential equations

εv
dvij(t)

dt
= vij(t)− v3ij(t)/3− wij(t) + z(xi, yj, t),

τl
dwij(t)

dt
= A+Bvij(t)− wij(t), (29)

where vij(t) and wij(t) are the voltage variable and its recovery variable,
respectively. These variables describe the state of each cell. The func-
tion z(x, y, t) is defined on two-dimensional space r = (x, y) and describe
the temporal changes of extracellular concentrations of depolarizing sub-
stances,which are supposed to be spreading in space [5]. Therefore, the
dynamics of z is described by the partial differential equation:

εz
∂z

∂t
= αzΨ(v)− z + γ

(
∂2z

∂x2
+
∂2z

∂y2

)
, (30)

where

Ψ(v) =
1

2

(
1 + tanh

(
v

vs

))
(31)

is a sigmoid function that depends on v: at small vs it approaches zero for
v < 0, and unity for v > 0 (see Ref. [55] for details). In spatial domain, at
the points rij occupied by model neurons, variable v, is supposed to be equal
to the voltage variable vij of specific model neuro unit and (31) is applied,
while in all other spatial locations Ψ(v) was set to zero (no influx to the
extracellular space).

The boundary conditions for z depend on specific problem under consid-
eration. The peri-infarct depolarization waves (PIDs) are typically observed
in the form of re-entrant waves circulating in closed area that surrounds the
injured tissue but in turn is bounded by the healthy one (Fig. 5). At a
very basic level, such environment can be modeled with a rectangular space
with mixed boundary conditions (b.c.). Specifically, the boundary for y co-
ordinate was composed from the Neumann b.c. and Dirichlet b.c. This
combination was previously shown to trigger the autonomous pacemaker [5].
The boundary condition for x was periodic, so the left edge of simulated
area was connected to the right edge, as shown in the Fig. 5 a. However,
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the diffusion rate at this junction line was assumed to be adjustable down
to zero. The later extreme case actually provided the diconnected left and
right egdes (each with Neumann b.c.), as shown in Fig. 5 b.

Computationally, the above described adjustment of boundary conditions
was implemented by means of scale factor kd as follows:

εz
dz1,j
dt

= αzΨ(v1,j)− z1,j + γ(z2,j − z1,j) +

+ kdγ(zN,j − z1,j), (32)

εz
dzN,j

dt
= αzΨ(vN,j)− zN,j + γ(zN−1,j − zN,j) +

+ kdγ(z1,j − zN,j). (33)

In (32),(33) z1,j and zN,j, with j = 1 . . . N refer to left and right edges
of N × N lattice that approximates the modeled medium. With this, if
kd = 1 then left and right edges of model space are connected like any other
locations, while for kd = 0 left and right edges become disconnected. Below
we adjust kd parameter only, while all other control parameters of the system
(29)–(30) were set according to the previous work [5] as follows: A = 0.5,
B = 1.1, τl = 1.0, εz = 1.0, αz = 1.1, εv = 0.004, γ = 7.5× 10−4, vs = 0.05,
hx = hy = h = 0.025.

For the chosen set of the control parameters and kd = 1 the system demon-
strate the complex wave pattern (Fig. 6, b) that consists of two distinctive
areas, one being the nucleation center (right corner in the figure panel), and
the other is filled with propagating waves. In order to classify this type of
the behavior and to characterize it quantitatively, we apply the developed
technique of Lyapunov exponent calculation.

4.2. Lyapunov Exponents

Following the algorithm, given in Sec. 2 (see step 1), the reference state
of the spreading depolarization model was chosen as

U(x, y, t) = (V11(x, y, t),W11(x, y, t), V12(x, y, t),W12(x, y, t), . . . ,

Vij(x, y, t),Wij(x, y, t), . . . ,

VNN(x, y, t),WNN(x, y, t), z(x, y, t))T , (34)

where Vij(x, y, t) = vij(t) and Wij(x, y, t) = wij(t), N
2 is the number of

the FHN oscillators. The scalar product of these states was calculated via
Eq. (9), where the integration was performed over both x and y ranges.
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According to step 2, the perturbation of the system state was written in
form

V(x, y, t) = (Ṽ11(x, y, t), W̃11(x, y, t), Ṽ12(x, y, t), W̃12(x, y, t), . . . ,

Ṽij(x, y, t), W̃ij(x, y, t), . . . ,

ṼNN(x, y, t), W̃NN(x, y, t), z̃(x, y, t))T , (35)

In order to describe the evolution of the perturbations, Ṽij(x, y, t), W̃ij(x, y, t)
and z̃(x, y, t) (step 3) the linear operator was obtained by the linearizion of
Eq. (30) in the vicinity of the reference state as

εv
∂Ṽij(x, y, t)

∂t
= Ṽij(xi, yj, t)− V 2

ij(xi, yj, t)Ṽij(xi, yj, t)−
−W̃ij(xi, yj, t) + z̃(xi, yj, t),

τl
∂W̃ij(x, y, t)

∂t
= BṼij(xi, yj, t)− W̃ij(xi, yj, t),

εz
∂z̃(x, y, t)

∂t
= αzΦ(v)ṽ − z̃(x, y, t)+

+γ

(
∂2z̃(x, y, t)

∂x2
+
∂2z̃(x, y, t)

∂y2

)
,

(36)

where

Φ(v) =
1

vsch2(v/vs).
(37)

and

ṽ =

{
Ṽij if r = rij,
0 if r 6= rij,

(38)

In order to describe the dynamics of the considered system 50 largest LEs
were calculated. For this purpose the set of 50 perturbations was obtained
with the help of Gram-Schmidt procedure (step 4). Following step 5 of
the algorithm, the set of Eqs. (29)–(33) and Eqs. (36)–(38) describing the
dynamics of the system state and its perturbation, respectively, along with
Gram-Schmidt procedure (step 6) were solved numerically to get Lyapunov
exponents (step 7).

First trial was performed at the non-closed spatial configuration as sketched
in the Fig. 5 b. Specifically, we have used Neumann boundary conditions
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(zero flux through the boundary) for z(0, x) and z(1, x). At the same time,
for the upper bound z(0, x∗), where x∗ ∈ [0.375, 0.625], the Dirichlet bound-
ary conditions were used. Finally, the lateral edges z(y, 0) and z(y, 1) were
disconnected since the kd was set to zero. The simulations were performed
on the lattice of 40 × 40 (i.e., N = 40) interacted oscillators as shown in
Fig. 6.

Figure 6, a demonstrates convergence of the method by presenting the
dependence of selected number of LEs on time t. These graphs show that
after t ≈ 2×104 (a.u) the values of the LEs almost do not change their values.
With this, the presence of eighteen positive Lyapunov exponents λ1 ÷ λ18 in
the spectrum (Fig. 6, a) reveals the spatio-temporal chaos developed in this
system. Indeed, as one can see from Fig. 6, b, the model shows the complex
spatio-temporal behavior. The key feature of this chaos

is the distinctive localization of the high-amplitude perturbations near the
right corner of figure panels (see Fig. 6, c,d), exactly at the wave nucleation
center that is observed in panel b. It confirms the hypothesis that irregular
spatio-temporal pattern is generated within this area and then spreads out
to occupy all the available space. During the next trial, kd was gradually
increased from zero to kd = 1 in order to observe and quantify the changes
in spatio-temporal dynamics caused by the evolution of modeled geometry
to cylindric one as shown in Fig. 5 a.

In Fig. 7,a the selected Lyapunov exponents (from the whole spectrum)
are shown, being the 1-st, the 2-nd, the 10-th, the 20-th, the 42-nd and the
50-th LEs, plotted against the values of kd ∈ [0, 1]. With kd increasing, until
kd = k1d = 0.2 no considerable changes are observed, fully developed spatio-
temporal chaos persists. For kd > k1d the values of all LEs behave highly
irregular, showing multiple jumps between negative and positive values, ex-
cept the highest one, Λ1 which remains positive. In the kd interval near the
kd ≈ 0.4 there is an interesting example of smooth rise of LEs showing the
gradual increase of the “degree of chaoticity”. With further increase of kd
non-monotonic behavior vanishes. For kd > k2d two largest Lyapunov expo-
nent are very close to zero, so one can classify this spatio-temporal dynamics
as quasiperiodic one.

In Fig. 7b-e the representative snapshots of z and the cross-plot between
the z values in two selected locations (namely, z(x1, y1) vs z(x0, y0)) are
shown for k1d = 0.2 and k2d = 0.6, that bound the transition area as described
above. One can make sure that at k1d there is the complex-shaped wave
pattern (d) with lack of obvious correlation between two analyzed points
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(b), while on panels (c) and (e) there is the well shaped regular pattern,
formed by the running waves. The corresponding power spectra of oscillations
z(r, t) in these selected locations r0 = (x0, y0) and r1 = (x1, y1) are shown
in Fig. 8. Figures 8, a,b display the spectrum of oscillations z(r0, t) and
z(r1, t), respectively, calculated for kd = k1d. Both spectra are continuous
and broadband, as it is typical for chaotic oscillations. For kd = k2d, the
character of the spectra dramatically changes, and for both r0 (Fig. 8 c) and
r1 (Fig. 8 d) the spectra are discrete, thus evidencing of regular oscillations
in the system.

Within the interval kd ∈ (0.28; 0.6) the Lyapunov exponents behavior
reflects the multiple transitions between different regular and irregular types
of the system dynamics. Some of typical dynamical regimes observed within
this range of kd-parameter value are given in Fig. 9. When the value of
kd parameter is relatively large (kd ∈ (0.36; 0.6)) the smooth behavior of
Lyapunov exponents is mostly observed, although the transition from regular
to chaotic regimes (and visa verse) takes place (see Fig. 9 a,b). For this
types of dynamics both the regular and irregular regimes are associated with
the propagation of the practically linear wave fronts. For the rather small
values of kd (namely, kd ∈ [0.26; 0.34]) the highly irregular dependence of LEs
curves on kd-parameter takes place, with the alternating regular and irregular
types of dynamics being characterized by the spiral wave propagation (see
Fig. 9 c,d).

5. Conclusions

In conclusion, we suggest a technique to calculate the spectrum of LEs
for a wide class of the dynamical systems, which are determined by set of
ODEs coupled with PDEs. We have discussed an approach to introduce the
reference state and its perturbations, which allows a reliable estimation of
the perturbation growth/decay rate. The proposed method was applied to
the two representative nonlinear DCSs with media of different dimension.

First, we considered a DCS with 1D medum, which models the charge
transport in a TED connected with an external lumped RLC-circuit. The
proposed method was able to unambiguously recognise the transition be-
tween regular an chaotic charge dynamics with variation of the bias voltage
applied to the TED and of the resonant frequency of the RLC-circuit. These
transitions were also confirmed by analysis of the spatio-temporal patterns
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in the charge transport along the TED as well as by calculation of the power
spectral density of the current oscillations generated by the device.

Next, we tested our method by analysing the stability of dynamical pat-
terns in DSC with 2D media describing neuron-to-neuron signalling via re-
distribution of ions in extracellular space. The method allowed to reveal how
the changes in boundary conditions affect the regularity of the depolariza-
tion spreading. In particular, we found that the appearance of turbulent
behaviour in ions redistribution within the extracellular space non-trivially
depends on the penetrability of the medium boundaries. These interesting
finding, supported by analysis of patio-temporal patterns and calculation of
the power spectrum of the concentration oscillations, is required more thor-
ough investigation, which is beyond the scope of the presented paper.

Generally, the developed approach bridges the gap in stability analysis
of complex composite dynamical models consisting of both extended and
lumped elements, and can thus be used in diverse areas of modern interdis-
ciplinary science dealing with such systems.
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Figure 2: The spectrum of five highest LEs (a), the spatiotemporal dynamics of the
reference state of the extended subsystem (b), the dynamics of the voltage in the circuit
(c) and the power spectrum of the voltage oscillations (d), corresponded to the periodical
regime, obtained for the spatially extended device interacting with the external circuit for
V0 = 0.45 V
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Figure 3: The spectrum of five highest LEs (a), the spatiotemporal dynamics of the
reference state of the extended subsystem (b), the dynamics of the voltage in the circuit
(c) and the power spectrum of the voltage oscillations (d), corresponded to the chaotic
regime, obtained for the spatially extended device interacting with the external circuit for
V0 = 0.86 V
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Figure 5: On the boundary conditions for model (29)-(30). Left: schematic drawing
of healthy (1), injured (3), and susceptible to depolarization wave area (2) (penumbra).
Right: spatial configuration of the model. Closed or non-closed area (2) is modeled with
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(a), 2-D distribution of the spatially extended variable z(x, y, t) (b) and its perturbations
(c – g), corresponded, respectively, to the presented LEs.
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Figure 7: The spectrum of Lyapunov exponents for the CSD model (a), containing the
1-st, the 2-nd, the 10-th, the 20-th, the 42-nd and the 50-th LEs, depending on the value
of kd, the zero-level is shown by the dashed line, the area of parameters, corresponding to
the transition from the periodically spreading waves to the well-developed spatiotemporal
chaos is marked by the shadow. The correlation between the evolution of the z-variable
in the different regions of active media (namely, z(x1, y1) and z(x0, y0)) (b,c) and the
momentum spatial distributions z(x, y) (d,e), corresponding to the chaotic (kd = k1d) and
periodic (kd = k2d) regimes, respectively. The locations of the points (x1, y1) and (x0, y0)
are shown by the solid circle and the solid square, the values of k1d and k2d are shown in
(a) by the arrows
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Figure 9: The momentum spatial distributions z(x, y) corresponding to the regular (a,
c) and chaotic (b, d) regimes, obtained for kd = 0.6 (a), kd = 0.5 (b), kd = 0.267 (c),
kd = 0.261 (d)
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