
Control of noise-induced oscillations by

delayed feedback

A.G. Balanov a , N.B. Janson b , E. Schöll a
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Abstract

We propose a method to control noise-induced motion, based on using delayed
feedback in the form of the difference between the delayed and the current states of
the system. The method is applied to two different types of systems, namely, a self-
oscillator near Andronov-Hopf bifurcation and a threshold system. In both cases we
demonstrate that by variation of time delay one can effectively control coherence
and timescales of stochastic oscillations. The entrainment of the basic period of
oscillations by time delay is discovered. We give explanations of the phenomena
observed and provide a theory for the system near bifurcation.
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1 Introduction

Control of complex irregular motion is one of the central problems of applied
nonlinear dynamics. As applied to oscillations, control usually means an ad-
justment of essential oscillation properties: stability, coherence, timescales, etc.
in a desirable manner by imposing a small perturbation on the system. Within
the last decades a substantial progress has been achieved in the development
of methods for the control of dynamical chaos [1–3], where the complexity
has a deterministic origin, and appears whenever the evolution of a dynamical
system depends sensitively on initial conditions. Originally, control of chaotic
motion assumed turning it into a regular, predictable one, by influencing the
system in an intelligent way. Most techniques for controlling chaos exploit the
idea of stabilization of unstable periodic orbits that are supposed to exist in
the systems to be controlled. There are three general approaches: a continuous
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external perturbation [4], a time-discrete conditioned perturbation [5], and a
feedback loop in the form of the difference between the current state of the
system and its state some τ time units ago [6].

Random fluctuations can be another source of irregularity in motion. For a
long time it has been thought that random noise alone can only bring dis-
order into the system, while being unable to produce any ordered motion.
However, nowadays this opinion has undergone serious revision. It has been
shown that noise influencing a nonlinear system can enhance the already or-
dered motion, and sometimes even give rise to quite a coherent dynamics.
Striking examples are stochastic resonance [7,8], when noise added to a non-
linear system enhances its response to a useful signal, and coherence resonance
when noise applied to an excitable system generates oscillations similar to self-
sustained ones, whose coherence depends resonantly on noise intensity [9,10].
Nonlinear systems that do not oscillate autonomously but demonstrate coher-
ence resonance are often called coherence resonance oscillators. These kinds
of phenomena seem to be prominent in many areas of science, e.g. physics,
biology, chemistry etc. [11–16]. With this, in contrast to deterministic chaos,
the control of noise-induced phenomena is still an open problem. Recently,
a number of methods were suggested for the control of stochastic resonance
[17,18] and of self-oscillations in the presence of noise [19]. In [20] an external
periodic force was proposed for the control of noise-induced oscillations in a
pendulum with a randomly vibrating suspension axis. All methods mentioned
above assume the presence of deterministic self-oscillating components in the
dynamics, and aim either to enhance the latter component or to exploit the
external deterministic oscillating force to manipulate the regularity of mo-
tion. In this paper we suggest a passive self-adaptive method for the control
of oscillations induced merely by noise. We show that the delayed feedback
in the form used previously for the control of deterministic chaos [6] includ-
ing spatio-temporal patterns [21–23] allows one to effectively manipulate the
properties of coherence resonance oscillations, that includes the adjustment of
their timescales.

The paper has the following structure: after the Introduction, in Section 2
the motivation for the proposed control method is given, and in Section 3 the
effect of delayed-feedback on the two different types of systems is described.
Section 4 presents the Conclusions.

2 Motivation for the approach proposed

As mentioned above, the idea of applying a delayed feedback in order to con-
trol chaotic motion is based on the fact that a chaotic attractor contains a
countable set of unstable periodic orbits embedded into it. Then, using, for
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instance, the feedback F (t) in the form:

F (t) = K(s(t − τ) − s(t)) (1)

where s(t) is the signal coming from the system, K is the feedback strength,
and τ is time delay being equal to the period T0 of a selected orbit, can
make this orbit stable [6]. Recently, the influence of the feedback as in [6] on
a deterministically chaotic system was studied for a small range of τ in the
vicinity of T0 [24], and the ability of the feedback to change the period of a
stabilized orbit was demonstrated.

In a coherence resonance oscillator there are no deterministic orbits. However,
noise makes such a system oscillate in quite a regular manner, giving rise to
phase portraits that are reminiscent of smeared-out limit cycles (see Fig. 1 for
an example). Remarkably, such stochastic oscillations were shown to possess
the fundamental property of deterministic self-oscillations, namely, the ability
to synchronize [25]. The analogies with self-sustained systems gave rise to the
term ”stochastic limit cycle” [26] to refer to the coherent motion in the phase
space that has arisen thanks to external random force. The “stochastic cycle”
has a shape that is characteristic of the given system, and a period that is
jointly defined by the structure of the phase space and by noise. Using the anal-
ogy between a stochastic limit cycle and a deterministic periodic orbit, one can
suppose that a delayed feedback applied to the former would produce an effect
similar to the one when applied to the latter, provided that the time delay is
equal or close to the basic or mean period [27] of the noise-induced motion.
Namely, it should suppress large deviations from the “stochastic cycle” and
thus enhance the regularity of oscillations. The control force can be expected
to be minimal if the time delay τ is equal to the period of the“stochastic cycle”.
However, it should not vanish since there is no deterministic periodic orbit in
the system. In order to check this, we apply delayed feedback (1) to two dif-
ferent types of systems, namely to a dynamical system near bifurcation and to
a threshold excitable system. A Van der Pol oscillator below Andronov-Hopf
(AH) bifurcation and a simplified FitzHugh-Nagumo system are considered as
prototype examples of the former and the latter classes, respectively.

3 Systems studied and results

3.1 Van der Pol oscillator below the Andronov-Hopf (AH) bifurcation.

The equations describing a Van der Pol oscillator with a delayed feedback loop
in the presence of noise read:
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Fig. 1. Phase portraits of noise-induced motion in Van der Pol system at ω0 = 1,
ε = −0.01, D = 0.003: (a) without feedback K = 0; (b) with feedback K = 0.2,
τ = T0.

ẍ − (ε − x2)ẋ + ω2
0x = K(ẋ(t − τ) − ẋ) + Dξ(t). (2)

Here ω0 defines the natural period of oscillations without feedback, K repre-
sents the delayed feedback strength, τ is time delay, ξ(t) is Gaussian white
noise with zero mean and intensity defined by the parameter D. The nonlin-
earity parameter ε governs the dynamics of the system. At K = 0, D = 0 and
a negative ε, the system does not exhibit self-oscillations. At ε = 0 the AH
bifurcation occurs, after which at ε > 0 a limit cycle exists in the phase space
of the system. We fix ε at a value −0.01 slightly below the AH bifurcation. In
this case the only attractor in the system is a stable focus. However, inclusion
of noise (D > 0) into the system can evoke motion in the phase space that
in many respects resembles noisy oscillations with basic period T0 ≈ 2π/ω0

(see Fig. 1(a)). To quantify the regularity of these oscillations one needs to
introduce a certain order parameter, for example, correlation time tcor as

tcor =
1

σ2

∞∫
0

|Ψ(s)|ds, (3)

where Ψ(s) = 〈(ẋ(t − s) − 〈ẋ〉)(ẋ(t) − 〈ẋ〉)〉 is the autocorrelation function of
signal ẋ(t) and σ2 is its variance. In Fig. 2 the dependence of tcor on the noise
intensity is shown by grey circles. From Fig. 2 it is seen that the regularity of
oscillations is larger for smaller noise D. Noise-induced motion in the systems
near bifurcations was considered in [28,29]. Note that, as our calculations have
shown, in the Van der Pol system below AH bifurcation the basic period of
noise-induced oscillations T0 almost does not change with variation of noise
intensity.

To check if the delayed feedback can enhance the regularity of noise-induced
motion, we set K = 0.2, and fix τ = 6.1728 at a value close to the basic
period T0 of stochastic oscillations without feedback. In Fig. 1(b) the phase
portrait of noise-induced motion under control for D = 0.003 is shown. In
comparison with Fig 1(a) obtained for the same value of D and K = 0, the
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Fig. 2. Van der Pol system. Correlation time tcor vs noise intensity D: without
delayed feedback, K = 0 (grey circles), and with delayed feedback with K = 0.2 at
τ = T0 (black diamonds) and at τ 6= T0 (white diamonds). Exact values of τ are
given in the text.

obvious ordering takes place which is reflected in a more regular rotation of
the phase trajectory around the fixed point at the origin. It is also confirmed
by estimation of correlation time tcor vs D for K = 0.2 which is shown in
Fig. 2 by black diamonds. A remarkable increase of coherence is observed for
all values of noise intensity. Thus, we can conclude that delayed feedback can
make noise-induced oscillations more ordered.

We note that increase of coherence of noise-induced motion (black diamonds
in Fig. 2) is observed if τ is close to T0 or its multiples. However, if τ is different
from that, the coherence can be decreased substantially by the feedback: white
diamonds in Fig. 2 show tcor vs D for τ = 3.3. At this value of τ , the coherence
is, on the contrary, deteriorated.

After our ability to change deliberately the coherence of noise-induced mo-
tion with the help of a feedback is demonstrated, consider if (and how) we
can manipulate the timescales of the process. The control parameter that is
expected to effect the system timescales is time delay τ . To assess the effect
of the value of τ on the performance of the feedback, we calculate the Fourier
Power Spectrum (FPS) of stochastic oscillations for a range of τ . Below we will
refer to FPS as to simply “spectrum” for brevity. For K = 0.2 and D = 0.003
the spectra are shown in Fig. 3. Since we are interested in comparing the
timescales of oscillations with the time interval τ rather than with some fre-
quency f , the spectra in the Fig. 3 are presented in terms of periods T = 1/f .
Without the feedback (τ = 0), the spectrum has only one pronounced peak
with period T1 equal to T0. However, as τ increases from zero more peaks
appear in the spectrum. For a better illustration of spectral properties, we
extract all spectrum peaks, order them with respect to decreasing heights,
denote their periods as Ti, i = 1, 2, . . . and plot Ti vs τ in Fig. 4(d). The basic
period T1 is shown by light-grey circles, while other periods Ti, i = 2, 3, . . .
are denoted by grey diamonds. We can make three important observations:
(i) the periods Ti of all peaks change with τ , (ii) the evolution of T1 has al-
most piecewise linear character; (iii) the heights and the widths of spectrum
peaks vary as τ changes. The first two observations mean that the delayed
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Fig. 3. Spectra of noise-induced oscillations in the Van der Pol system in the presence
of delayed feedback for a range of τ at D = 0.003, K = 0.2

feedback entrains the timescales of noise-induced oscillations: the change in τ
results in an almost proportional change in Ti. The third observation implies
that by varying the delay one can control the regularity of oscillations. As
seen from Fig. 4(a), the function tcor of τ has an oscillatory character with
maxima at τ ≈ nT0 and minima τ ≈ (2n − 1)T0/2, where n is an integer. In
Fig 4(b) the variance of the control force F (t) = (ẋ(t − τ) − ẋ(t)) is given as
a function of τ [30]. It is interesting that minima of 〈F 2〉 correspond to the
maxima of tcor. That means that less force is required to control more regular
behavior. However, as we expected, in contrast to the deterministic case, this
force never vanishes. Explanation of these effects requires a general analysis
of Eq. (2), which appears to be a difficult task, since due to the delay the
process described by this equation is essentially non-Markovian, and the pow-
erful methods like Fokker-Planck equations suitable for Markovian processes,
are not applicable here. At present, the theory of stochastic delay differential
equations is under development, and the methods created so far mostly cover
linear and very specific cases of nonlinear systems [31–37,19]. However, in our
analysis we can exploit the fact that in Eq. (2) the oscillations occur in the
vicinity of the fixed point. Hence we assume that the local properties of this
point should effect the noise-induced motion. Let us consider a general case
of a canonic nonlinear oscillator with time-delayed feedback:

ẍ + f(x, ẋ) − K(ẋ(t − τ) − ẋ) = 0, (4)

or

ẋ = y (5)

ẏ =−f(x, y) + K(y(t − τ) − y),

that describes Eq. (2) with f(x, ẋ) = −(ε − x2)ẋ + ω2
0x. At K=0, Eq. (4)

possesses a single fixed point defined by the equation f(x0, 0) = 0. With this,
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Fig. 4. (a) Correlation time tcor, (b) variance 〈F 2〉 of control force, (c) real parts
pi, i = 1, 2, . . . of eigenvalues and (d) spectrum peak periods Ti vs τ at D = 0.003
and K = 0.2. In (c) the largest of pi’s, i.e. p1, is marked by grey. In (d) light-grey
circles - basic period T1, grey diamonds - Ti, i = 2, 3, . . ., black dots - eigenperiods
T e

i = 2π/|qi|, i = 1, 2, . . ..

if

0 <
∂f

∂ẋ

∣∣∣∣
(x0,0)

< 2

√
∂f

∂x

∣∣∣∣
(x0,0)

, (6)

the fixed point (x0, 0) is a stable focus. The delayed feedback at K > 0 does
not change the position of the fixed point, however it could influence the local
properties of the point that are defined by its eigenvalues. Following the stan-
dard routine of linearizing Eq. (4) around the fixed point, the characteristic
equation for λ is derived:

λ2 + λ
∂f

∂ẋ

∣∣∣∣
(x0,0)

+
∂f

∂x

∣∣∣∣
(x0,0)

− Kλ(e−λτ − 1) = 0, (7)
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Using the ansatz λ = p+ iq we separate real (p) and imaginary (q) parts of λ:

p2 − q2 +
∂f

∂x

∣∣∣∣
(x0,0)

+ p
∂f

∂ẋ

∣∣∣∣
(x0,0)

+ K(p − pe−pτ cos qτ − qe−pτ sin qτ) = 0

2pq + q
∂f

∂ẋ

∣∣∣∣
(x0,0)

+ K(q + pe−pτ sin qτ − qe−pτ cos qτ) = 0. (8)

Let us analyze the obtained Eqs. (8). First, check if the feedback in the form
used might possibly induce the birth of a stable limit cycle via AH bifurcation,
thus providing a trivial explanation for the remarkable ordering of oscillations.
The condition for AH bifurcation is p = 0, q 6= 0. Substituting it into the
second of Eqs. (8) we obtain:

cos qτ =
K + ∂f

∂ẋ
|(x0,0)

K
. (9)

Condition (6) implies that the right-hand part of Eq. (9) is larger than unity,
whereas the left-hand part is always smaller than unity. This contradiction
means that an AH bifurcation does not occur for any K and τ , i.e. no limit
cycle is born from the fixed point.

Now, consider if and how p and q are related to the properties of noise-induced
oscillations. The real part p defines the stability of the fixed point. At τ = 0
the fixed point has two complex-conjugate eigenvalues with negative p1,2. As
τ gets positive, the system becomes infinite-dimensional with a countable set
of eigenvalues, whose real parts appear from minus infinity and always remain
negative. We order all eigenvalues λi, i = 1, 2, . . . in descending order of their
real parts pi, so that p1 is the largest one. In Fig. 4(c) pi are given as functions
of τ . p1 (highlighted by a grey line) has a pronounced oscillatory character as
τ increases and correlates well with the graph for tcor in Fig. 4(a). That means
that the motion induced by noise is most coherent (tcor is the largest) when
the fixed point is least stable (p1 is closest to zero).

Each imaginary part qi describes the velocity of rotation of the phase trajec-
tory around the fixed point that is associated with its ith eigenmode. The
corresponding eigenperiods T e

i = 2π/|qi| are given in Fig. 4(d) by black dots
and seem to coincide remarkably with the spectrum peak periods Ti. To avoid
overloading the picture, we do not color-code the period T e

1 of the least stable
eigenmode here, but note that it always coincides with T1. Also, the other
branches of T e

i that are close to the spectral period Ti are related to the set of
eigenmodes, which are least stable. The latter means that in system (4) with
delayed feedback noise excites those eigenmodes which are least stable. The
piecewise behavior of T1 is due to intersections between different branches of
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Fig. 5. Evolution of spectral peak periods Ti of noise-induced oscillations in Van der
Pol system as a function of τ at D = 0.003 for different values of K (compare with
Fig. 4(d)): (a) K = 0.1, (b) K = 0.5. Notation as in Fig. 4(d).

pi in Fig. 4(c): at the point of intersection, another spectral peak becomes
the highest one. The coincidence of Ti and T e

i was also confirmed for other
feedback strengths K as illustrated in Fig. 5.

Interestingly, if |ε| << K then from Eq. (9) it follows that cos qτ ≈ 1 and
qτ ≈ 2πn with integer n. Then the eigenperiod T e

1 is

T e
1 = 2π/|q1| ≈ τ/n. (10)

Eq. (9) and, consequently, Eq. (10), hold the better, the closer p1 is to zero.
This explains the almost piecewise-linear behaviour of the basic periods T1 in
Figs. 4(d) and 5 at large τ , at which the condition p1 ≈ 0 holds more accurately
(Fig. 4(c)). Formula (10) also provides the values of τ corresponding to the
maxima of coherence of noise-induced oscillations. As mentioned above, the
maximal coherence corresponds to the least stability of the fixed point, that
is to the proximity of p1 to zero. Then we substitute p1 = 0, |q1| = 2πn/τ ,
and f(x, ẋ) of the Van der Pol system into the first of Eqs. (8), and finally
obtain τ = 2πn/ω0 = nT0, which agrees well with the numerical results (see
Fig. 4(a)).

Now, consider how another parameter of the feedback, namely, the strength
K, influences the noise-induced oscillations. Fig. 6 illustrates the peak periods
T1,2 of two spectrum peaks and eigenvalues of the fixed point as functions of
K. We set D = 0.003 and analyze two distinct cases of time delay τ . Namely,
τ = 6.1728 ≈ T0 (Fig. 6(a),(c)), and τ = 3.3 (Fig. 6(b),(d)), at which the
feedback with K = 0.2 produces the most and the least coherent oscillations,
respectively. For τ almost equal to the basic period T0 of uncontrolled oscilla-
tions, the increase of K does not change the position of the basic peak with
period T1 = T0 (light-grey cirles in Fig. 6(a)). With this, at K ≈ 0.25 another
peak appears whose period T2 (grey diamonds in Fig. 6(a)) monotonically
increases with K. Eigenperiods T e

1,2 of the two least stable eigenmodes are
shown by black dots in Fig. 6(a); they coincide with reasonable accuracy with
T1,2, respectively. The slight discrepancy between T2 and T e

2 (upper branches)
is probably due to the fact that the estimate of the central period of a wide
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Fig. 6. (a), (b) Spectral peak periods T1,2 (circles, diamonds) and eigenperiods T e
1,2

(dots); (c), (d) the two largest real parts p1,2 of eigenvalues of the fixed point in
the Van der Pol system vs K at D = 0.003. (a), (c) τ = 6.1728, (b), (d) τ = 3.3.
Symbols are the same as in Figs. 4 (c) and (d).

and low spectrum peak that is almost hidden in the background introduces
some numerical error. If, however, τ = 3.3, T1 remains close to T0 for a range
of K / 0.21. As K is increased further, the basic peak splits into two, with pe-
riods T1 and T2. T1 grows monotonically with K, while T2, remaining smaller,
tends to coincide with τ for large K.

The evolution of heights of the two peaks roughly follows the evolution of
the real parts p1,2 of the eigenvalues shown in Figs. 6 (c) and (d). Whereas
at τ = 6.1728 the growth of K leads to increase in both p1 and p2, which is
associated with an enhancement of both eigenmodes (Fig. 6(c)), at τ = 3.3,
p1,2 evolve non-monotonically. As seen from Fig. 6(d), at K / 0.21, p1 (grey
lines in Fig. 6(d)) drops, whereas p2 (black dots in Fig. 6(d)) increases. This
means that as K increases, the mode associated with T0 is being gradually
suppressed, while the mode with period close to τ is enhanced by delayed
feedback. Starting from K ≈ 0.21, the suppression of the basic eigenmode
stops, and further increase of K enhances both modes.

3.2 Simplified FitzHugh-Nagumo system.

Now consider another example of an excitable system, namely, a simplified
FitzHugh-Nagumo system which is often treated as a prototype of excitable
media like neurons and reaction-diffusion systems:

µ
dx

dt
= x − x3

3
− y, (11)
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Fig. 7. Phase portraits of noise-induced motion in the FitzHugh-Nagumo system
at D = 0.09, µ = 0.01, a = 1.1: (a) without feedback K = 0; (b) with feedback
K = 0.2, τ = T0 .

dy

dt
= x + a + K(y(t − τ) − y) + Dξ(t).

We choose the parameters µ = 0.01 and a = 1.1 such that a stable node is the
only attractor of the system in the absence of feedback. Here, as in Eq. (2) τ
is a time delay, K is the feedback strength, and D is the intensity of Gaussian
white noise ξ with zero mean. In contrast to the system considered in Section
3.1, the oscillations induced by noise in Eq. (11) have a nonlocal character (see
Fig. 7(a)). Null-isoclines (lines defined by ẋ = 0 and ẏ = 0) shown in Fig. 7 by
dashed lines separate different directions of motion in the phase space. They
intersect at the fixed point. The noise-induced motion includes two compo-
nents: oscillations near the fixed point and long excursions along branches of
null-isocline defined by ẋ = 0, i.e. by y = x− x3/3. Because µ is chosen to be
small, the motion between the fixed point and the right-hand branch of the
cubic parabola, and between the right-hand maximum of the parabola and
left-hand branch, occurs almost instantly, and the associated time contribu-
tion can be reasonably neglected. This means that each instantaneous period
of oscillations contains two components: time of escape from the vicinity of
the fixed point (activation time) and time of motion along the branches of the
parabola (excursion time) [38]. To initiate an excursion, the phase trajectory
should be kicked out of a certain vicinity of the fixed point, which allows one
to treat this kind of excitability as “a threshold excitability”. Although Eqs.
(11) do not conform to the canonical oscillator Eq. (4), the stability of the
fixed point can be checked analytically using the standard approach. It has
been shown that delayed feedback does not induce AH bifurcation in Eq. (11).
The global character of oscillations renders the approach used for the Van der
Pol system in Section 3.1 inappropriate. Therefore, in this Section we present
only the results of numerical simulation.

Since the essential component of the oscillations is motion along null-isoclines,
on which the noise influence is small, a visual comparison of the phase portraits
of the system without control (Fig. 7(a)) and with control (Fig. 7(b)) does not
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Fig. 8. FitzHugh-Nagumo system. (a) Correlation time tcor and (b) basic periods of
noise-induced oscillations without delayed feedback K = 0 (grey circles), and with
delayed feedback with K = 0.2 at τ = T0 (black diamonds), and τ 6= T0 (white
diamonds) as functions of noise intensity D. Exact values of τ are given in the text.

yield a significant difference. However, the calculation of correlation time tcor

using Eq. (3) reveals that as in an oscillator below AH bifurcation, the delayed
feedback can remarkably increase the coherence of oscillations given the time
delay τ is chosen appropriately. Fig. 8(a) shows how tcor depends on noise
intensity D in the absence of feedback, K = 0 (grey circles), and at K = 0.2
(black diamonds) with τ = 4.12694 close to the basic period T0 of uncontrolled
oscillations at optimal noise D = 0.09.

It is clearly seen that the feedback with the given parameters amplifies the
regularity of noise-induced motion practically for any value of D. The pres-
ence of an activation time in the system dynamics makes the timescale of its
oscillations quite dependent on noise intensity [38]. In Fig. 8 (b) grey circles
show the basic period T0 of noise-induced oscillations vs noise-intensity D
for K = 0, while black diamonds show the basic period T1 when the control
with the above parameters is applied. These graphs show that the delayed
feedback reduces the range of variation of the basic oscillation period under
the change in noise strength. The latter is a consequence of the fact that the
control orders and stabilizes the time intervals between successive excursions.
For comparison, we have applied feedback control with K = 0.2 and a delay
time τ = 3 that is essentially different from T0 (white diamonds in Fig. 8
(a),(b)). With this τ the coherence of oscillations decreases, the basic period
T1 shifts closer to τ , and the range of its variation remains approximately
the same as under control with τ = T0. Hence, application of delayed feed-
back to a FitzHugh-Nagumo oscillator can not only change the regularity of
noise-induced oscillations, but also make them more robust against variation
in noise intensity.

Next, we study how the feedback parameters effect the properties of oscilla-
tions. First, consider spectra of oscillations for a range of time delay τ (Fig.
9). It seems that the effect of delay on a system with ”threshold excitabil-
ity” is in many respects similar to the one on a system near AH bifurcation
(compare with Fig. 3). Actually, in both cases the variation of τ leads to
the variation of the number, position, height and width of spectrum peaks.
Moreover, like in systems near bifurcation, the entrainment of timescales of
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Fig. 9. Spectra of noise-induced oscillations in the FitzHugh-Nagumo system in the
presence of delayed feedback for a range of τ at D = 0.09, K = 0.2

noise-induced oscillations by delayed feedback occurs, which manifests itself in
an almost piecewise-linear shift of peak positions as τ increases (Fig. 10(c)).
However, unlike in the Van der Pol system, the spectrum of oscillations in the
FitzHugh-Nagumo system contains several pronounced peaks even without
control (τ = 0), which makes the effect of control more complicated. Fig. 10
reflects the influence of delay on the oscillation regularity tcor (a), and on the
variance 〈F 2〉 of the control force F (b). Both characteristics exhibit oscillatory
character. Similarly to the Van der Pol oscillator, the global minimum of the
control force in the FitzHugh-Nagumo system is achieved at τ approximately
equal to the basic period T0 of oscillations without control T0 ≈ 4.12694. All
the other minima of 〈F 2〉 occur at τ close to multiples of T0. However, the
minima of 〈F 2〉 do not coincide with the maxima of tcor. Comparison with
Fig. 10(c) reveals that the maxima of coherence occur when the basic period
T1 becomes equal to T0. The non-coincidence could be due to the presence
of two components in the system motion that are affected by the feedback in
different ways. Actually, the activation times are most regular at τ ≈ T0, that
means that a smaller force is required to kick the trajectory out of the vicinity
of the fixed point. At the same time, the highest basic peak in the spectrum
exists at τ ≈ 5.1, at which the oscillations are most coherent on the whole.
With this, the shift of spectral peaks as τ increases is close to linear (Fig.
10(c)) like in the case of the Van der Pol system, that means the entrainment
of timescales of stochastic oscillations. Moreover, the presence of entrainment
seems not to depend on the feedback strength K in a reasonable range of K
(Fig. 11). The increase of K can lead to the enrichment of spectral content
of motion, however the linear character of T1 vs τ is not affected. Fig. 12 il-
lustrates how an increase of K can change the spectral peak positions for two
distinct values of τ : (a) for τ = 4.12694 ≈ T0, and (b) for τ = 2.9 at which the
global minimum of tcor occurs (see Fig. 10(a)). At τ = 4.12694 the feedback
slightly decreases the basic period T1 against T0 until it reaches about 3.7 at
K ≈ 0.2. As K is increased further, T1 slowly increases until it approaches
the value of 4 at K = 2. Several other peaks with smaller periods, which exist

13



0 5 10 15 20
τ

0

0.1

0.2

0.3

0.4

0.5

<
F2 >

0 5 10 15 20
τ

1

2

3

t co
r

0 5 10 15 20
 τ

2

3

4

5

6

7

T
i

(a)

(b)

(c)

Fig. 10. (a) Correlation time tcor, (b) variance 〈F 2〉 of control force and (c) peak
periods Ti, i = 1, 2, . . . vs τ at D = 0.09 and K = 0.2.
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Fig. 11. Evolution of peak periods Ti, i = 1, 2, . . . of noise-induced oscillations in
the FitzHugh-Nagumo system with τ at D = 0.09 and different values of K: (a)
K = 0.1 (b) K = 0.5. Grey diamonds - peak periods Ti, i = 2, 3, . . ., light-grey
circles - basic period T1.

without feedback as well, evolve with K in a similar manner. An interesting
observation is that at K ≈ 0.2 a new peak appears with larger period, which
did not exist without the feedback. As K increases, both the period and the
height of this peak grow monotonically until at K ≈ 1.75 this peak becomes
dominant. We observe that although the nature of oscillations in system (11)
is different from that in (2), the behavior of the period of the spectrum peak
induced by the feedback is qualitatively similar in both systems (compare Figs.
6(a) and 12(a)).

Hence, a phenomenon that could be called period entrainment by delayed feed-
back is realized here. The entraining effect of the delayed feedback on systems
with two different kinds of noise-induced oscillations considered appears to be

14



0 0.4 0.8 1.2 1.6 2

K
0

5

10

15

20

25

T
i

0 0.4 0.8 1.2 1.6 2

K
0

5

10

15

20

25

T
i

(b)(a)

Fig. 12. Spectral peak periods Ti, i = 1, 2, . . . in the FitzHugh-Nagumo system for
a range of K at D = 0.09 for two values of τ : (a) τ = 4.12694 ≈ T0, (b) τ = 2.9
Symbols are as in Fig. 11.

similar, the latter providing evidence for its generality.

At τ = 2.9 the period T1 of the highest peak, i.e. T0 without feedback, increases
until at K ≈ 0.1 the peak ceases to be dominant. However, it continues to
exist and its period grows monotonically with K. At the same time several
other peaks with smaller periods, which exist without feedback as well, hardly
change their periods and heights. However, at K ≈ 0.1 a new peak appears
in the spectrum that becomes dominant as K is increased a bit further. The
period of this peak is close to τ and only slightly depends on K. The behavior
of the period of this feedback-induced peak is qualitatively similar to the one in
Eq. (2) (compare Figs. 6(b) and 12(b)). Thus, the basic period of oscillations
is induced by feedback to coincide with τ within a proper range of K.

4 Conclusions

In the present work we propose a self-adaptive method for control of oscil-
lations induced merely by noise. The method is based on using the delayed
feedback loop in the form of the difference between the delayed and the current
values of a signal measured from the system. The effectiveness of this control
scheme is demonstrated for two different prototypes of coherence resonance
oscillators, namely, a system near bifurcation, and a threshold system. As their
examples, a Van der Pol oscillator below Andronov-Hopf bifurcation, and a
simplified FitzHugh-Nagumo system were considered. For both systems it was
shown that: (i) with a proper choice of feedback parameters τ and K one can
effectively control the coherence of noise induced oscillations in a desirable
manner, i.e. improve or deteriorate the oscillation coherence deliberately; (ii)
variation of time delay τ and/or feedback strength K allows one to adjust
the basic timescales of noise-induced motion; (iii) this adjustment can be re-
alized either by entrainment of a period of the existing spectrum peak or by
generation of a new spectral peak with period close to τ .

In a system below Andronov-Hopf bifurcation, the control is due to the effect
of the delayed feedback loop upon the stability properties of the fixed point
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in whose vicinity the noise-induced oscillations take place. In fact, delayed
feedback gives rise to a countable set of eigenmodes, whose eigenperiods and
stability are controlled by τ . The highest peak in the spectrum of the noise-
induced motion is due to excitation of the most unstable mode. The coherence
of oscillations is the higher, the less stable the mode is. With this, the control
force appears to be minimal at those τ at which the coherence of controlled
oscillations is maximal.

In a threshold excitable system the effect of a control loop is more complicated
due to the nonlocal character of noise-induced motion. The latter includes two
stages: oscillations around the fixed point and a long excursion in the phase
space which provides return of the trajectory back to the vicinity of the fixed
point. The delayed feedback influences either of these two stages in different
ways, which leads to the difference between the value of τ at which the control
force is minimal, and the value of τ at which oscillations are most coherent.
With this, the force is minimal when delayed feedback makes the time intervals
between successive excursions more regular.
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