562 research outputs found

    Business Models for Sustainable Finance: The Case Study of Social Impact Bonds

    Get PDF
    Business models for sustainability (BMfS) are relevant topics on research agendas, given their orientation toward sustainability issues. However, traditional versions of these models are often ill-equipped at solving complex social problems. Cross-sector partnerships for sustainability (CSPfS) have been recognized as a new paradigm that mitigates the failure of traditional models. Impact investing, and social impact bonds (SIBs) in particular, represent an interesting field of research in innovative business models for sustainable finance, even though the literature does not consider SIBs within this broader field. We propose an exploratory study based on qualitative methods aimed at conceptualizing SIBs within the framework of BMfS and understanding how SIB collaboration varies across social sectors and geographical areas. Our study identifies three different models of SIBs characterized by the different degrees of collaboration between actors: (i) SIB as a fully collaborative partnership; (ii) SIB as a low-collaborative partnership; and (iii) SIB as a partially collaborative partnership. Our findings are useful to policy makers and practitioners involved in the SIB design, suggesting that a fully collaborative SIB model may stand a better chance of achieving the expected social impacts

    The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach

    Get PDF
    Preprint publicado en: Materials Characterization Volume 155, September 2019, 109809The present investigation deals with how minor elements (their oxides: MgO, Na2O and SO3) in industrial kiln feeds affect (i) chemical reactions upon clinkering, (ii) resulting phase composition and microstructure of clinker, (iii) hydration process during cement production. Our results show that all these points are remarkably sensitive to the combination and interference effects between the minor chemical species mentioned above. Upon clinkering, all the industrial raw meals here used exhibit the same formation temperature and amount of liquid phase. Minor elements are preferentially hosted by secondary phases, such as periclase. Conversely, the growth rate of the main clinker phases (alite and belite) is significantly affected by the nature and combination of minor oxides. MgO and Na2O give a very fast C3S formation rate at T > 1450 K, whereas Na2O and SO3 boost C2S After heating, if SO3 occurs in combination with MgO and/or Na2O, it does not inihibit the C3S crystallisation as expected. Rather, it promotes the stabilisation of M1-C3S, thus indirectly influencing the aluminate content, too. MgO increseases the C3S amount and promotes the stabilisation of M3-C3S, when it is in combination with Na2O. Na2O seems to be mainly hosted by calcium aluminate structure, but it does not induce the stabilisation of the orhtorhombic polymorph, as supposed to occur. Such features play a key role in predicting the physicalmechanical performance of a final cement (i.e. rate of hydration and hardening) when used as a bulding material.The present study has been partly funded by the project PRIN 2017 (2017L83S77), of the Italian Ministry for Education, University and Research (MIUR)

    p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice

    Get PDF
    Epilepsy is a complex clinical condition characterized by repeated spontaneous seizures. Seizures have been linked to multiple drivers including DNA damage accumulation. Investigation of epilepsy physiopathology in humans imposes ethical and practical limitations, for this reason model systems are mostly preferred. Among animal models, mouse mutants are particularly valuable since they allow conjoint behavioral, organismal, and genetic analyses. Along with this, since aging has been associated with higher frequency of seizures, prematurely aging mice, simulating human progeroid diseases, offer a further useful modeling element as they recapitulate aging over a short time-window. Here we report on a mouse mutant with progeroid traits that displays repeated spontaneous seizures. Mutant mice were produced by reducing the expression of the gene Ft1 (AKTIP in humans). In vitro, AKTIP/Ft1 depletion causes telomere aberrations, DNA damage, and cell senescence. AKTIP/Ft1 interacts with lamins, which control nuclear architecture and DNA function. Premature aging defects of Ft1 mutant mice include skeletal alterations and lipodystrophy. The epileptic behavior of Ft1 mutant animals was age and sex linked. Seizures were observed in 18 mutant mice (23.6% of aged ≥ 21 weeks), at an average frequency of 2.33 events/mouse. Time distribution of seizures indicated non-random enrichment of seizures over the follow-up period, with 75% of seizures happening in consecutive weeks. The analysis of epileptic brains did not reveal overt brain morphological alterations or severe neurodegeneration, however, Ft1 reduction induced expression of the inflammatory markers IL-6 and TGF-β. Importantly, Ft1 mutant mice with concomitant genetic reduction of the guardian of the genome, p53, showed no seizures or inflammatory marker activation, implicating the DNA damage response into these phenotypes. This work adds insights into the connection among DNA damage, brain function, and aging. In addition, it further underscores the importance of model organisms for studying specific phenotypes, along with permitting the analysis of genetic interactions at the organismal level

    Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells

    Get PDF
    Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties

    A clinical trial of oral hyposensitization in systemic allergy to nickel.

    Get PDF
    Nickel allergy is the most common contact allergy. Some nickel-sensitive patients present systemic (cutaneous and/or digestive) symptoms related to the ingestion of high nickel-content foods, which significantly improve after a specific low nickel-content diet. The etiopathogenetic role of nickel in the genesis of systemic disorders is, furthermore, demonstrated by the relapse of previous contact lesions, appearance of widespread eczema and generalized urticaria-like lesions after oral nickel challenge test. The aim of this study is to investigate the safety and efficacy of a specific oral hyposensitization to nickel in patients with both local contact disorders and systemic symptoms after the ingestion of nickel-containing foods. Inclusion criteria for the recruitment of these patients were (other than a positive patch test) a benefit higher than 80% from a low nickel-content diet and a positive oral challenge with nickel. Based on the previous experiences, our group adopted a therapeutic protocol by using increasing oral doses of nickel sulfate associated to an elimination diet. Results have been excellent: this treatment has been effective in inducing clinical tolerance to nickel-containing foods, with a low incidence of side effects (gastric pyrosis, itching erythema)
    • …
    corecore