1,501 research outputs found

    Health Management Applications for International Space Station

    Get PDF
    Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow for the ISS Electrical Power System and can predict power balance for nominal and off-nominal conditions. SimStation uses realtime telemetry data to keep detailed computational physics models synchronized with actual ISS power system state. In the event of failure, the application can then rapidly diagnose root cause, predict future resource levels and even correlate technical documents relevant to the specific failure. These advanced computational models will allow better insight and more precise control of ISS subsystems, increasing safety margins by speeding up anomaly resolution and reducing,engineering team effort and cost. This technology will make operating ISS more efficient and is directly applicable to next-generation exploration missions and Crew Exploration Vehicles

    Modeling a Wireless Network for International Space Station

    Get PDF
    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows

    Sensor Data Distribution With Robustness and Reliability: Toward Distributed Components Model

    Get PDF
    In planetary surface exploration mission, sensor data distribution is required in many aspects, for example, in navigation, scheduling, planning, monitoring, diagnostics, and automation of the field tasks. The challenge is to distribute such data in the robust and reliable way so that we can minimize the errors caused by miscalculations, and misjudgments that based on the error data input in the mission. The ad-hoc wireless network on planetary surface is not constantly connected because of the nature of the rough terrain and lack of permanent establishments on the surface. There are some disconnected moments that the computation nodes will re-associate with different repeaters or access points until connections are reestablished. Such a nature requires our sensor data distribution software robust and reliable with ability to tolerant disconnected moments. This paper presents a distributed components model as a framework to accomplish such tasks. The software is written in Java and utilized the available Java Message Services schema and the Boss implementation. The results of field experimentations show that the model is very effective in completing the tasks

    Sensor Arrays for Aerospace Vehicles

    Get PDF
    Advances in highly scalable sensors, wireless networks, distributed computing and data fusion algorithms enable significant improvements in high-level information-centric state determination for adaptable and autonomous aerospace vehicles. The objective is to increase insight into structural response of space vehicles and insight into the aerodynamics of new aircraft

    The TechEdSat/PhoneSat Missions for Small Payload Quick Return

    Get PDF
    In 2014, Ames Research Center launched the Technical Educational Satellite 4 (TechEdSat 4) from an external launcher aboard the International Space Station. This experimental CubeSat deployed an exobrake, an exo-atmospheric drag chute that can be used for controlled de-orbit of a small payload canister from earth orbit. This capability is useful for returning biological samples from ISS and even planetary samples from beyond the earth. Such capability can support better biological and medical science experiments and is a long-term goal of NASA and industry. The results of the TechEdSat 4 (TES4) mission will be presented along with the design of the follow-on spacecraft, TechEdSat5/PhoneSat5 (TES5/PS5), which will launch from ISS this summer. The TES4 exobrake deployed, changed the drag on the CubeSat, resulting in early orbital reentry. The time frame for de-orbit and the quantitative drag assessment from this experiment is very useful for designing future Small Payload Quick Return (SPQR) methods and spacecraft. The TES5/PS5 features improved GPS tracking and a modulated exo-brake allowing more precise control of the exo-atmospheric drag and therefore the re-entry time and location. The TES5/PS5 is a significant upgrade from TES4, featuring an improved C&DH built around the Intel Edison mobile computing platform, the core of new PhoneSat. This CubeSat has an ISM-band WiFi downlink for data, significantly reducing the cost of such communication services. It features multiple cameras to help verify exo-brake deployment and modulation. The GPS tracking should give precise orbital trajectories leading to much better drag assessment, re-entry targetting and other benefits

    SOAREX-8 Suborbital Experiments 2015 - A New Paradigm for Small Spacecraft Communication

    Get PDF
    In 2015 NASA plans to launch a payload to 280 Km altitude on a sounding rocket from the Wallops Flight Facility. This payload will contain several novel technologies that work together to demonstrate methodologies for space sample return missions and for nanosatellite communications in general. The payload will deploy and test an Exo-Brake, which slows the payload aerodynamically, providing eventual de-orbit and recovery of future ISS samples through a Small Payload Quick Return project. In addition, this flight addresses future Mars mission entry technology, space-to-space communications using the Iridium Short Messaging Service (SMS), GPS tracking, and wireless sensors using the ZigBee protocol. SOAREX-8 is being assembled and tested at Ames Research Center (ARC) and the NASA Engineering and Safety Center (NESC) is funding sensor and communications work. Open source Arduino technology and software are used for system control. The ZigBee modules used are XBee units that connect analog sensors for temperature, air pressure and acceleration measurement wirelessly to the payload telemetry system. Our team is developing methods for power distribution and module mounting, along with software for sensor integration, data assembly and downlink. We have demonstrated relaying telemetry to the ground using the Iridium satellite constellation on a previous flight, but the upcoming flight will be the first time we integrate useful flight test data from a ZigBee wireless sensor network. Wireless sensor data will measure the aerodynamic efficacy of the Exo-Brake permitting further on orbit flight tests of improved designs. The Exo-Brake is 5 sq m in area and will be stored in a container and deployed during ascent once the payload is jettisoned from the launch vehicle. We intend to further refine the hardware and continue testing on balloon launches, future sounding rocket flights and on nanosatellite missions. The use of standards-based and open source hardware/software has allowed for this project to be completed with a very modest budget and a challenging schedule. There is a wealth of hardware and software available for both the Arduino platform and the XBee, all low-cost or open-source. Along with the Exo-Brake hardware and deployment discussion, this paper will describe in detail the system architecture emphasizing the successful use of open source hardware and software to minimize effort and cost. Testing procedures, radio frequency interference (RFI) mitigation, success criteria and expected results will also be discussed. The use of Iridium short messaging capability for space-to-space links, standards-based wireless sensor networks, and other innovative communications technology are also presented

    Polysubstance addiction vulnerability in mental illness: Concurrent alcohol and nicotine self‐administration in the neurodevelopmental hippocampal lesion rat model of schizophrenia

    Get PDF
    Multiple addictions frequently occur in patients with mental illness. However, basic research on the brain‐based linkages between these comorbidities is extremely limited. Toward characterizing the first animal modeling of polysubstance use and addiction vulnerability in schizophrenia, adolescent rats with neonatal ventral hippocampal lesions (NVHLs) and controls had 19 weekdays of 1 hour/day free access to alcohol/sucrose solutions (fading from 10% sucrose to 10% alcohol/2% sucrose on day 10) during postnatal days (PD 35‐60). Starting in adulthood (PD 63), rats acquired lever pressing for concurrent oral alcohol (10% with 2% sucrose) and iv nicotine (0.015 mg/kg/injection) across 15 sessions. Subsequently, 10 operant extinction sessions and 3 reinstatement sessions examined drug seeking upon withholding of nicotine, then both nicotine and alcohol, then reintroduction. Adolescent alcohol consumption did not differ between NVHLs and controls. However, in adulthood, NVHLs showed increased lever pressing at alcohol and nicotine levers that progressed more strongly at the nicotine lever, even as most pressing by both groups was at the alcohol lever. In extinction, both groups showed expected declines in effort as drugs were withheld, but NVHLs persisted with greater pressing at both alcohol and nicotine levers. In reinstatement, alcohol reaccess increased pressing, with NVHLs showing greater nicotine lever activity overall. Developmental temporal‐limbic abnormalities that produce mental illness can thus generate adult polydrug addiction vulnerability as a mechanism independent from putative cross‐sensitization effects between addictive drugs. Further preclinical modeling of third‐order (and higher) addiction‐mental illness comorbidities may advance our understanding and treatment of these complex, yet common brain illnesses

    Hybrid Mobile Communication Networks for Planetary Exploration

    Get PDF
    A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths

    Reliability Study of Equilibrium Moisture Content Methods for Sorption/Desorption Isotherms Determination of Autoclaved Aerated Concrete

    Get PDF
    Autoclaved aerated concrete (AAC) and its hygric parameters are a highly important issue in the field of building physics. There are several methods currently available to determine the equilibrium moisture content of building materials. Beside the conventional ones, new methods are constantly being introduced. This study explores the sorption/desorption properties of of three types of commercially produced AACs with three different bulk densities and demonstrates the application of the relevant methods available to characterize these parameters. The reliable characterization of the studied material was done through the conventional static approach, using the desiccator and an environmental chamber, and a new automated method of dynamic vapor sorption is implemented. The goal is to compare and identify the reliability of all methods used with respect to the efficiency of the data measurement process. Sound consistency between the results of the conventional methods and the experimental data obtained indicates the dynamic vapor sorption technique is highly reliable when measuring the equilibrium moisture content-particularly exemplified during the AAC sample testing. Therefore, the methodology developed in this study is expected to provide the reference for measuring the sorption/desorption isotherms of building materials with both static and automated techniques

    Software Architecture of Sensor Data Distribution In Planetary Exploration

    Get PDF
    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed
    corecore