14 research outputs found

    The Generalized Graetz Problem in Finite Domains

    Get PDF
    We consider the generalized Graetz problem associated with stationary convection-diffusion inside a domain having any regular three-dimensional translationally invariant section and finite or semi-infinite extent. Our framework encompasses any previous “extended” and “conjugated” Graetz generalizations and provides theoretical bases for computing the orthogonal set of generalized two-dimensional Graetz modes. The theoretical framework includes both heterogeneous and possibly anisotropic diffusion tensors. In the case of semi-infinite domains, the existence of a bounded solution is shown from the analysis of two-dimensional operator eigenvectors which form a basis of L2 . In the case of finite domains a similar basis can be exhibited, and the mode’s amplitudes can be obtained from the inversion of newly defined finite domain operator. Our analysis includes both the theoretical and practical issues associated with this finite domain operator inversion as well as its interpretation as a multireflection image method. Error estimates are provided when numerically truncating the spectrum to a finite number of modes. Numerical examples are validated for reference configurations and provided in nontrivial cases. Our methodology shows how to map the solution of stationary convection-diffusion problems in finite three-dimensional domains into a two-dimensional operator spectrum, which leads to a drastic reduction in computational cost

    Numerical Analysis of a New Mixed Formulation for Eigenvalue Convection-Diffusion Problems

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization
    corecore