25 research outputs found

    Central nervous system functions of PAK protein family: From spine morphogenesis to mental retardation

    Get PDF
    Several of the genes currently known to be associated, when mutated, with mental retardation, code for molecules directly involved in Rho guanosine triphosphatase (GTPase) signaling. These include PAK3, a member of the PAK protein kinase family, which are important effectors of small GTPases. In many systems, PAK kinases play crucial roles regulating complex mechanisms such as cell migration, differentiation, or survival. Their precise functions in the central nervous system remain, however, unclear. Although their activity does not seem to be required for normal brain development, several recent studies point to a possible involvement in more subtle mechanisms such as neurite outgrowth, spine morphogenesis or synapse formation, and plasticity. This article reviews this information in the light of the current knowledge available on the molecular characteristics of the different members of this family and discuss the mechanisms through which they might contribute to cognitive function

    Modelling soil water conent in a tomato field: proximal gamma ray spectroscopy and soil-crop system models

    Get PDF
    Proximal soil sensors are taking hold in the understanding of soil hydrogeological processes involved in precision agriculture. In this context, permanently installed gamma ray spectroscopy stations represent one of the best space-time trade off methods at field scale. This study proved the feasibility and reliability of soil water content monitoring through a seven-month continuous acquisition of terrestrial gamma radiation in a tomato test field. By employing a 1 L sodium iodide detector placed at a height of 2.25 m, we investigated the gamma signal coming from an area having a ~25 m radius and from a depth of approximately 30 cm. Experimental values, inferred after a calibration measurement and corrected for the presence of biomass, were corroborated with gravimetric data acquired under different soil moisture conditions, giving an average absolute discrepancy of about 2%. A quantitative comparison was carried out with data simulated by AquaCrop, CRITeRIA, and IRRINET soil-crop system models. The different goodness of fit obtained in bare soil condition and during the vegetated period highlighted that CRITeRIA showed the best agreement with the experimental data over the entire data-taking period while, in presence of the tomato crop, IRRINET provided the best results.Comment: 18 pages, 9 Figures, 3 Table

    Histone H3 Lysine 4 and 27 Trimethylation Landscape of Human Alzheimer's Disease

    Get PDF
    none9sìBackground: Epigenetic remodeling is emerging as a critical process for both the onset and progression of Alzheimer's disease (AD), the most common form of neurodegenerative dementia. However, it is not clear to what extent the distribution of histone modifications is involved in AD. Methods: To investigate histone H3 modifications in AD, we compared the genome-wide distributions of H3K4me3 and H3K27me3 in entorhinal cortices from severe sporadic AD patients and from age-matched healthy individuals of both sexes. Results: AD samples were characterized by typical average levels and distributions of the H3K4me3 and H3K27me3 signals. However, AD patients showed a lower H3K4me3 and higher H3K27me3 signal, particularly in males. Interestingly, the genomic sites found differentially trimethylated at the H3K4 between healthy and AD samples involve promoter regions of genes belonging to AD-related pathways such as glutamate receptor signaling. Conclusions: The signatures of H3K4me3 and H3K27me3 identified in AD patients validate the role of epigenetic chromatin remodeling in neurodegenerative disease and shed light on the genomic adaptive mechanisms involved in AD.openPersico, Giuseppe; Casciaro, Francesca; Amatori, Stefano; Rusin, Martina; Cantatore, Francesco; Perna, Amalia; Auber, Lavinia Alberi; Fanelli, Mirco; Giorgio, MarcoPersico, Giuseppe; Casciaro, Francesca; Amatori, Stefano; Rusin, Martina; Cantatore, Francesco; Perna, Amalia; Auber, Lavinia Alberi; Fanelli, Mirco; Giorgio, Marc

    The oxytocin-induced inward current in vagal neurons of the rat is mediated by G protein activation but not by an increase in the intracellular calcium concentration

    No full text
    The neuropeptide oxytocin can depolarize parasympathetic preganglionic neurons in the dorsal motor nucleus of the vagus nerve of the rat by generating a sustained inward current, which is sodium-dependent and tetrodotoxin-insensitive. The second messenger activated by oxytocin receptor binding is, however, not yet known. In the present study, we attempted to characterize it by using the whole-cell recording technique and brainstem slices. When loaded with GTP-gamma-S, a non-hydrolysable analogue of GTP, vagal neurons generated a persistent inward current in the absence of agonist and the oxytocin effect was suppressed, suggesting that the peptide-evoked current was mediated by G-protein activation. Loading vagal neurons with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N',-tetraacetic acid (BAPTA) suppressed a calcium-dependent, slowly decaying potassium aftercurrent but did not affect the oxytocin response, suggesting that the latter was not mediated by an agonist-induced increase in the intracellular calcium concentration. Protein kinase C (PKC) activation was probably not involved, since the peptide-evoked current was not modified by loading neurons with the PKC inhibitor H7. Thus, the oxytocin-evoked current in vagal neurons was probably not mediated by phospholipase C-beta (PLC-beta) activation. Loading neurons with 8-Br-cAMP or with an adenylyl cyclase activator (forskolin) reduced the oxytocin-evoked current by about half. SQ 22536, an adenylyl cyclase inhibitor, reduced this current by a similar amount. However, the peptide-evoked current was unaffected by Rp-cAMPS and Sp-cAMPS, an inhibitor and an activator, respectively, of cAMP-dependent protein kinase (PKA). We suggest that oxytocin activates two distinct signalling pathways in vagal neurons: one which is cAMP-dependent, but PKA-independent, and one, unidentified, which is PLC-beta-and cAMP-independent. Each pathway accounts for about half of the peptide effect and both appear to involve G-protein activation

    Application of photoconversion technique for correlated confocal and ultrastructural studies in organotypic slice cultures

    No full text
    Photoconversion of fluorescent staining into stable diaminobenzidine (DAB) precipitate is widely used for neuroanatomical and developmental studies. An important advantage of the approach is to make correlations between light and electron microscopy analyses possible, the DAB reaction product formed during photoconversion being electron dense. By combining a photoconversion approach with biolistic transfection of neurons in organotypic hippocampal slice cultures, we describe here a methodology that allowed us to study at the electron microscopy level the fine details of cells expressing specific genes of interest. The same approach has also been used to analyze the ultrastructural characteristics of specific cells such as neurons recorded with patch clamp techniques. This approach revealed particularly useful for studies of dendritic arborisation, dendritic spines, and axon varicosities of identified cells, as precise morphometric parameters of these structures can only be obtained by electron microscopy. The techniques used for fluorescent staining and photoconversion of these different cell structures and the results obtained by electron microscopic analyses are described

    Glutamate receptor changes associated with transient anoxia/hypoglycaemia in hippocampal slice cultures

    No full text
    Transient anoxia/hypoglycaemia in organotypic hippocampal slice cultures, a model of transient brain ischaemia, ultimately results in delayed cell death. Although the mechanisms underlying this delayed death remain unknown, an increase in excitatory drive has been postulated. We report here that transient anoxia/hypoglycaemia in rat hippocampal slice cultures resulted in a 70-80% enhancement of evoked, alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptor-mediated, excitatory responses lasting over 60 min. This effect was prevented by blockade of N-methyl-d-aspartate (NMDA) receptors, did not involve changes of paired-pulse facilitation ratio, but was associated with a 50% increase in amplitude, but not frequency, of spontaneous miniature excitatory postsynaptic currents (mEPSCs). Consistent with this, paired recordings revealed the appearance of AMPA receptor-mediated EPSCs at previously silent synapses and occlusion by prior induction of long-term potentiation (LTP). Transient anoxia/hypoglycaemia further resulted in a 63% potentiation of evoked NMDA receptor-dependent synaptic responses, accounting for the 20% increase in ratio of AMPA to NMDA responses. No change in rectification properties of AMPA receptor-mediated currents could be detected within the first hour following anoxia/hypoglycaemia-induced potentiation. Western blot analyses of slice cultures exposed to either control conditions or a short anoxia/hypoglycaemia revealed a marked, 50-70% increase of GluR1, GluR2/3 and NR1 subunits 1 h, but not 15 min, after the anoxic/hypoglycaemic episode. This increase was blocked by an inhibitor of protein synthesis. Together these results indicate that a transient anoxia/hypoglycaemia is associated with a marked enhancement of excitatory transmission sharing similarities with the mechanisms underlying LTP, and is correlated with an increased synthesis of excitatory receptor subunits

    Action of a metabotropic glutamate receptor agonist in rat lateral septum: induction of a sodium-dependent inward aftercurrent

    No full text
    The mechanism by which (1S,3R)-ACPD, a metabotropic glutamate receptor agonist, induces burst firing in lateral septal neurons of the rat was investigated in coronal brainstem slices. Membrane currents were characterized in voltage clamp using whole-cell recordings. In the presence of (1S,3R)-ACPD, following depolarizing voltage jumps, repolarization towards the holding potential generated an inward aftercurrent. It could have a plateau-like phase and decayed exponentially. This (1S,3R)-ACPD-dependent inward aftercurrent was accompanied by an increase in cell conductance and was reduced following partial replacement of extracellular sodium by N-methyl-D-glucamine. It was unaffected by TEA or barium, and persisted in Cs-loaded neurons or following partial replacement of extracellular chloride by isethionate. This suggests that it was mainly carried by sodium. Loading neurons with the calcium chelator, BAPTA, or blocking transmembrane calcium currents, suppressed the (1S,3R)-ACPD-dependent aftercurrent. By contrast, partial replacement of extracellular sodium by lithium did not affect it. Thus, this current was dependent upon calcium influx but was not due to a sodium/calcium exchanger. It was probably mediated by G protein activation. Indeed, in neurons loaded with GTP-gamma-S, following depolarizing voltage jumps, repolarization towards the holding potential revealed an inward aftercurrent having properties similar to those of the (1S,3R)-ACPD-dependent current. We suggest that (1S,3R)-ACPD induced calcium-activated non-selective channels. In the presence of this agonist, a depolarization-evoked calcium influx could thus evoke a cationic inward current. This current probably promotes the burst firing observed in lateral septal neurons in current clamp

    Central nervous system functions of PAK protein family: from spine morphogenesis to mental retardation

    No full text
    Several of the genes currently known to be associated, when mutated, with mental retardation, code for molecules directly involved in Rho guanosine triphosphatase (GTPase) signaling. These include PAK3, a member of the PAK protein kinase family, which are important effectors of small GTPases. In many systems, PAK kinases play crucial roles regulating complex mechanisms such as cell migration, differentiation, or survival. Their precise functions in the central nervous system remain, however, unclear. Although their activity does not seem to be required for normal brain development, several recent studies point to a possible involvement in more subtle mechanisms such as neurite outgrowth, spine morphogenesis or synapse formation, and plasticity. This article reviews this information in the light of the current knowledge available on the molecular characteristics of the different members of this family and discuss the mechanisms through which they might contribute to cognitive functions

    Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia

    No full text
    Cerebral ischemia is a major cause of brain dysfunction. Using a model of delayed death induced by a brief, transient oxygen and glucose deprivation, we studied here how this affected the structural organization of hippocampal synaptic networks. We report that brief anoxic–hypoglycemic episodes rapidly modified the structure of synapses. This was characterized, at the electron microscopic level, by a transient increase in the proportion of perforated synapses, followed after 2 hr by an increase in images of multiple synapse boutons. These changes were considerable because 10–20 % of all synapses were affected. This structural remodeling was correlated by three kinds of modifications observed using two-photon confocal microscopy: the growth of filopodia, occurring shortly (5–20 min) after anoxia–hypoglycemia, enlargements of existing spines, and formation of new spines, both seen mainly 20–60 min after th
    corecore