264 research outputs found

    The microbiology of Lascaux Cave

    Get PDF
    Lascaux Cave (Montignac, France) contains paintings from the Upper Paleolithic period. Shortly after its discovery in 1940, the cave was seriously disturbed by major destructive interventions. In 1963, the cave was closed due to algal growth on the walls. In 2001, the ceiling, walls and sediments were colonized by the fungus Fusarium solani. Later, black stains, probably of fungal origin, appeared on the walls. Biocide treatments, including quaternary ammonium derivatives, were extensively applied for a few years, and have been in use again since January 2008. The microbial communities in Lascaux Cave were shown to be composed of human-pathogenic bacteria and entomopathogenic fungi, the former as a result of the biocide selection. The data show that fungi play an important role in the cave, and arthropods contribute to the dispersion of conidia. A careful study on the fungal ecology is needed in order to complete the cave food web and to control the black stains threatening the Paleolithic paintings. © 2010 SGM.We thank support from the Ministry of Culture and Communication, France, the Spanish project CGL2006-07424/BOS, and facilities from DRAC Aquitaine. This is a TCP CSD2007-00058 paper.Peer Reviewe

    Genetic diversity of pathogenic and nonpathogenic populations of Fusarium oxysporum isolated from carnation fields in Argentina

    Get PDF
    In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.Centro de Investigaciones de FitopatologĂ­

    Recovery of mutants impaired in pathogenicity after transposition of Impala in Fusarium oxysporum f. sp. melonis

    Get PDF
    The ability of transposon impala to inactivate genes involved in pathogenicity was tested in Fusarium oxysporum f. sp. melonis. Somatic excision of an impala copy inserted in the nitrate reductase-encoding niaD gene was positively selected through a phenotypic assay based on the restoration of nitrate reductase activity. Independent excision events were analyzed molecularly and shown to carry reinsertedimpala in more than 70% of the cases. Mapping of reinserted impala elements on large NotI-restriction fragments showed that impala transposes randomly. By screening 746 revertants on plants, a high proportion (3.5%) of mutants impaired in their pathogenic potential was recovered. According to the kinetics of wilt symptom development, the strains that were impaired in pathogenicity were clustered in three classes: class 1 grouped two strains that never induced Fusarium wilt symptoms on the host plant; class 2 and class 3 grouped 15 and 9 revertants which caused symptoms more than 50 and 30 days after inoculation, respectively. The first results demonstrate the efficiency of transposition in generating mutants affected in pathogenicity, which are usually difficult to obtain by classical mutagenesis, and open the possibility to clone the altered genes with impala as a tag

    The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    Get PDF
    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth

    The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    Full text link
    • …
    corecore