41 research outputs found

    Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma

    Get PDF
    Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment

    Molecular Mechanism of Tryptophan-Dependent Transcriptional Regulation in Chlamydia trachomatis

    No full text
    Tryptophan is an essential amino acid that is required for normal development in Chlamydia species, and tryptophan metabolism has been implicated in chlamydial persistence and tissue tropism. The ability to synthesize tryptophan is not universal among the Chlamydiaceae, but species that have a predicted tryptophan biosynthetic pathway also encode an ortholog of TrpR, a regulator of tryptophan metabolism in many gram-negative bacteria. We show that in Chlamydia trachomatis serovar D, TrpR regulates its own gene and trpB and trpA, the genes for the two subunits of tryptophan synthase. These three genes form an operon that is transcribed by the major form of chlamydial RNA polymerase. TrpR acts as a tryptophan-dependent aporepressor that binds specifically to operator sequences upstream of the trpRBA operon. We also found that TrpR repressed in vitro transcription of trpRBA in a promoter-specific manner, and the level of repression was dependent upon the concentrations of TrpR and tryptophan. Our findings provide a mechanism for chlamydiae to sense changes in tryptophan levels and to respond by modulating expression of the tryptophan biosynthesis genes, and we present a unified model that shows how C. trachomatis can combine transcriptional repression and attenuation to regulate intrachlamydial tryptophan levels. In the face of host defense mechanisms that limit tryptophan availability from the infected cell, the ability to maintain homeostatic control of intrachlamydial tryptophan levels is likely to play an important role in chlamydial pathogenesis

    Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid

    No full text
    BackgroundTumor specific genetic material can be detected in extracellular vesicles (EVs) isolated from blood, cerebrospinal fluid (CSF), and other biofluids of glioblastoma patients. As such, EVs have emerged as a promising platform for biomarker discovery. However, the optimal procedure to transport clinical EV samples remains poorly characterized.MethodsWe examined the stability of EVs isolated from CSF of glioblastoma patients that were stored under different conditions. EV recovery was determined by Nanoparticle tracking analysis, and qRT-PCR was performed to determine the levels of miRNAs.ResultsCSF EVs that were lyophilized and stored at room temperature (RT) for seven days exhibited a 37-43% reduction in EV number. This reduction was further associated with decreased abundance of representative miRNAs. In contrast, the EV number and morphology remained largely unchanged if CSF were stored at RT. Total RNA and representative miRNA levels were well-preserved under this condition for up to seven days. A single cycle of freezing and thawing did not significantly alter EV number, morphology, RNA content, or miRNA levels. However, incremental decreases in these parameters were observed after two cycles of freezing and thawing.ConclusionsThese results suggest that EVs in CSF are stable at RT for at least seven days. Repeated cycles of freezing/thawing should be avoided to minimize experimental artifacts
    corecore