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Abstract

Glioblastoma cells secrete extra-cellular vesicles (EVs) containing microRNAs (miRNAs). Analysis of these EV
miRNAs in the bio-fluids of afflicted patients represents a potential platform for biomarker development. However, the
analytic algorithm for quantitative assessment of EV miRNA remains under-developed. Here, we demonstrate that
the reference transcripts commonly used for quantitative PCR (including GAPDH, 18S rRNA, and hsa-miR-103) were
unreliable for assessing EV miRNA. In this context, we quantitated EV miRNA in absolute terms and normalized this
value to the input EV number. Using this method, we examined the abundance of miR-21, a highly over-expressed
miRNA in glioblastomas, in EVs. In a panel of glioblastoma cell lines, the cellular levels of miR-21 correlated with EV
miR-21 levels (p<0.05), suggesting that glioblastoma cells actively secrete EVs containing miR-21. Consistent with
this hypothesis, the CSF EV miR-21 levels of glioblastoma patients (n=13) were, on average, ten-fold higher than
levels in EVs isolated from the CSF of non-oncologic patients (n=13, p<0.001). Notably, none of the glioblastoma
CSF harbored EV miR-21 level below 0.25 copies per EV in this cohort. Using this cut-off value, we were able to
prospectively distinguish CSF derived from glioblastoma and non-oncologic patients in an independent cohort of
twenty-nine patients (Sensitivity=87%; Specificity=93%; AUC=0.91, p<0.01). Our results suggest that CSF EV
miRNA analysis of miR-21 may serve as a platform for glioblastoma biomarker development.
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Introduction

Glioblastoma is the most common form of primary brain
cancer and remains one of the deadliest of human cancers [1].
Timely diagnosis and sensitive therapeutic monitoring remain
major challenges in the treatment of this disease. Clinically,
response evaluations are largely based on clinical examination
and Magnetic Resonance Imaging (MRI) [2]. However, both
clinical examination and MRI are insensitive measures of

disease status. For instance, the lowest resolution for reliable
detection by MRI is on the order of millimeters [3]. Considering
the size of a tumor cell, this limitation in resolution translates
into a delay of at least ten cell divisions before therapeutic
resistance can be detected [4]. While repeated post-treatment
biopsies constitute a monitoring option, this practice is
associated with significant morbidity [5,6]. In this context, less
invasive platforms for therapeutic monitoring are needed.
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Recent studies suggest that glioblastoma cells secrete
extracellular vesicles (EVs) containing genetic materials that
mirror the intracellular tumor milieu, including tumor specific
mutations and patterns of RNA expression [7–11]. These EVs
are released into the local environment and transgress
anatomic compartments into cerebrospinal fluid (CSF) and the
systemic blood circulation [7,8,12,13]. Analyses of these EVs
offer a potential platform for monitoring tumor presence,
phenotypic/genotypic features, and pathophysiology
[7,9,14,15]. The EVs shelter the tumor-specific genetic material
from the extracellular environment that is replete with RNAses
[16,17] and preserve the integrity of these materials.
Importantly, the genetic materials within EVs appear highly
enriched for RNAs in the size range of microRNAs (miRNAs)
[9].

Since non-neoplastic cells secrete EVs [18–20] and they out-
number neoplastic cells by several orders of magnitude in a
patient [21], tumor-specific EVs remain a rarity in clinical
samples [22]. As such, sensitive methods of amplification, such
as quantitative polymerase chain reactions (qPCR), are
required for detection and quantitation of RNA in EVs [7,8,23].
In the frequently used relative CT method of qPCR [24], the
cellular abundance of a “query” transcript is assessed by
determining the number of cycles of PCR required to reach a
threshold quantity [25]. To correct for the quality and quantity of
the input material, this cycle number is then normalized to the
PCR cycles required for a reference transcript to reach the
same threshold [26]. This method assumes abundance and
near-homogeneity of the reference transcript level per cell
[27,28].

Here we report that the commonly used reference transcripts
for quantitation of cellular RNA, including GAPDH, 18S rRNA,
and hsa-miR-103, are present in extremely low and highly
varied levels within EVs (on the order of 1 copy per 103 to 104

EVs). Moreover, their relative abundance in EVs bears no
correlation to the total EV number or RNA yield. In this context,
we characterized the abundance of EV miRNAs in absolute
terms and normalized this value to the input EV particle
numbers. Using this method, we studied the level of hsa-
miR-21, a miRNA that is highly over-expressed in glioblastoma
cells [29]. Our results indicate that miR-21 levels were
significantly elevated in EVs isolated from the CSF of
glioblastoma patients relative to those derived from non-
oncologic patients.

Materials and Methods

Clinical specimen collection
All research performed were approved by IRB boards at

University of California, San Diego Human Research
Protections Program and were in accordance with the
principles expressed at the declaration at Helsinki. Each patient
was consented by a dedicated clinical research specialist prior
to collection. Written consent was obtained for each patient.
The consent process was approved by the ethics committee,
and all records were documented in our electronic record
system. The written consent from patients was also scanned
into our electronic filing system. The serum and CSF

specimens for the initial, exploratory studies were collected at
the University of California San Diego Medical Center under
IRB 120345X. The sera collection and an initial training CSF
collection were performed by CCC and BSC at the time of
surgical procedure. The CSF was collected by ventricular/
lumbar drain placement or cisternal aspiration at the time of
craniotomy. Blood was collected using an 18 Gauge-needle
venipuncture into clot-activating blood collection tubes with gel
separator (BD vacutainer catalog #366450). Attention was paid
to minimize mechanical tube agitation. The samples were
processed by spinning at 1,500 x g within 30 minutes of
collection and the snap frozen [30]. The clinical diagnosis of the
non-oncologic patients who contributed blood samples were:
severe head trauma (n=2), subarachnoid hemorrhage (n=2),
and normal pressure hydrocephalus (n=1). The clinical
diagnosis of the non-oncologic patients who contributed CSF
samples were: trauma (n=2), subarachnoid hemorrhage (n=8),
normal pressure hydrocephalus (n=2), arteriovenous
malformation (n=2). All diagnoses of glioblastoma were
histologically confirmed. CSF specimens were snap frozen in
-80 upon receipt and analyzed without further centrifugation.
The CSF specimens for the validation study were generously
provided by Dr. Santosh Kesari (University of California, San
Diego; IRB 110551X) and Dr. Erwin Van Meri (Emory
University, IRB 642-2005). 1-5 mL of CSF was collected from
each patient through lumbar or ventricular puncture.

EV free media preparation
EV-depleted medium was prepared by ultracentrifugation of

DMEM supplemented with 20% FBS at 120,000 x g for 18
hours at 4°C. The medium was then diluted to a final
concentration of 10% FBS and used to culture cell lines as
described.

Cell lines and cell culture
Eleven human glioblastoma cell lines (A1207, A172, LN18,

LN340, LN464, T98G, U118, U373, U87MG, LN229, and
LN235) [31] and 3 non-glioblastoma cell lines (A549, U20S,
and 293T) [32–34] were cultured in DMEM supplemented with
10% FBS. At 60-70% confluency, the standard culture medium
was replaced with EV depleted medium. The cells were
cultured for an additional 72 hours before EV collection from
the cell-free supernatants. 9 neurosphere lines (1123, 326, 83,
30, AC17, AC20, 84, BT70, and CMK3) were cultured in
DMEM F12 supplemented with growth factors as described
previously [35–37]. Cell free supernatant was collected three
days after culturing for EV isolation.

Extracellular vesicle (EV) Isolation
The effect of freeze-thaw cycle on the stability of vesicular

content has not been well studied. In order to avoid
degradation of vesicles, all samples were processed promptly
upon thawing of serum and CSF samples. The EV fraction was
isolated by differential centrifugation [38]. Briefly, conditioned
media or diluted bio-fluids were first centrifuged at 2,000 x g for
20 minutes to remove cellular debris. The supernatant was
collected and further centrifuged at 10,000 x g for 30 minutes.
The resultant supernatant was then transferred to
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ultracentrifuge tubes for ultracentrifugation at 120,000 x g for 2
hours. The supernatant was discarded and the EV pellets were
re-suspended in 150μL of PBS for storage at -80°C prior to
RNA isolation. All centrifugation steps were performed at 4°C.
This protocol was designed to enrich for EVs in the 50-250 nm
size range (Figure 5).

EV Quantification and Assessment
The number of vesicles recovered was determined by

Nanoparticle Tracking Analysis (NTA) on a Nanosight
LM-10HS in accordance to the manufacturer’s instructions
(Nanosight, Wiltshire, UK). Resuspended vesicles were diluted
1:40 to 1:200 with PBS before analysis. The purity of the EV
isolated were assessed using electron microscopy as
previously described [38] (Figure 1).

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction (qRT-PCR)

RNA from the EV fraction was extracted using the
mirRCURY RNA Isolation Kit (Exiqon, Vedbaek, Denmark) per
manufacturer’s protocol. RNA concentration and quality were
determined using the NanoDrop ND-1000 Spectrophotometer
(Thermo Scientific, Waltham, MA). For profiling GAPDH, 18S
rRNA, miR-21, and miR-103 expression, cDNA was
synthesized with the miRCURY LNATM Universal RT microRNA
PCR system (Exiqon). The resultant cDNA were diluted 20x for
qRT-PCR. (See Table 1 for primer information).

Determination of copy number
To determine the absolute copy numbers of GAPDH and

18S RNA in the cellular cytoplasm and in the EVs, a standard
curve for each gene was generated using serial dilutions of
known quantity of U87MG genomic DNA. The copy number of
GAPDH and 18S RNA within the U87 genome was previously
determined by integrated sequencing efforts and comparative
genomic hybridization [39]. To determine copy number of
miRNA (miR-103, miR-21), standard curves were generated by
serial dilution of known quantities of miRNA mimic (Qiagen,
Germantown, MD), followed by cDNA synthesis using the
miRCURY LNATM Universal RT microRNA PCR system under
conditions that allow one round of cDNA synthesis [40]. The
cDNAs were then used for the generation of standard curve.

Statistical Analysis
All statistical analyses were performed using the GraphPad

Prism Software version 5 (GraphPad, La Jolla, CA). Correlation
between GAPDH, 18S RNA, and miR-103 transcript level, EV
RNA yield, and EV numbers were determined using Pearson’s
Correlation [41]. Difference in hsa-miR-21 level between
glioblastoma and non-oncologic clinical samples was
determined using the student’s t-test (2 tailed) [42]. Sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV), Receiver Operating Characteristic
(ROC) curve and Area Under the Curve (AUC) were
determined as previously described [43].

Results

GAPDH, 18S rRNA, and hsa-miR-103 levels in
glioblastoma cell line derived EVs

Housekeeping genes, such as GAPDH, 18S rRNA, and
miR-103, are expressed at high levels across cell types and
exhibit little cell-to-cell variability relative to most query genes.
As such, they are considered well-validated reference genes in
the expression profiling of cellular contents [27,28,44]. The
absolute copy number of these transcripts in EVs, however,
remains poorly characterized. Since the mechanisms by which
genetic materials are transported from the cell into the EVs
remain largely unknown [45], it is conceivable that EV transcript
levels differ from their cellular expression levels. Despite this
knowledge gap, GADPH mRNA, 18s rRNA, and miR-103
transcripts are frequently used as reference genes for
quantitative analysis of EV-derived genetic materials [46–48]
via the relative CT qPCR method [49–53].

We first determined the relative abundance of GAPDH
mRNA, 18S rRNA, and hsa-miR-103 in EVs derived from 6
glioblastoma and 2 non-glioblastoma adherent cell lines. All
three transcripts were abundant in the cellular cytoplasm, with
copy numbers that ranged from 300 to 1,000 copies per cell for
GAPDH, 100,000 to 1,000,000 copies for 18S rRNA, and 8,000
to 80,000 copies for hsa-miR-103 (Table 1). These copy
numbers are comparable to those previously published
[54–57].

We next analyzed the level of reference transcripts in EVs
secreted by these adherent cell lines. EVs were isolated by
ultracentrifugation and their numbers were determined by
Nanoparticle Tracking Analysis [58–61]. While all three
transcripts were detectable, their abundance in the EVs were
approximately 105 -1010 fold lower than the levels detected in
the cellular cytoplasm. At most, an average of one copy of
GAPDH transcript was detected in 1,000 EVs; an average of
one 18S rRNA transcript was found in 40 EVs; an average of
one copy of miR-103 transcript was present in 750 EVs (Table
1).

To determine whether reference housekeeping genes would
serve as surrogate markers for the total RNA yield or the total
number of EVs, we analyzed the levels of GAPDH mRNA, 18S
rRNA, and hsa-miR-103 in EVs isolated from 11 glioblastoma
and 3 non-glioblastoma adherent cell lines (cultured under
serum conditions). We observed that the level of the potential
reference transcripts varied by at least an order of magnitude in
EVs isolated from different lines. The expression of the 18S
rRNA and hsa-miR-103 demonstrated low correlation with EV
RNA yield (Figure 1A) or EV number (Figure 1B). While EV
GADPH transcript level demonstrated correlation with EV RNA
yield and number, these correlations were not as robust as
those seen between cellular GAPDH transcript level and cell
number (Figure 1C) or the RNA yield from cell extracts (Figure
1D).

As cell lines cultured under neurosphere and serum-free
conditions may better recapitulate certain aspects of
glioblastoma biology [62,63], we quantitated the three potential
reference transcripts in the EVs isolated from nine glioblastoma
neurosphere lines [35–37]. While GAPDH mRNA, 18S rRNA,
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and hsa-miR-103 were abundant in the cellular cytoplasm, their
abundance in the EVs was 108 fold less relative to the cellular
content (Table 1). In contrast to the results obtained using
adherent glioblastoma lines, GADPH mRNA levels in EVs
derived from neurosphere lines did not correlate with EV RNA
yield (Figure 2A) or EV number (Figure 2B). Instead,
correlations were observed between EV hsa-miR-103 and 18s
rRNA and EV number/EV RNA yield (Figures 2A and 2B).
Careful analysis of the correlation plot, however, suggests that
the correlations may have been driven by a small subset of
samples. In EVs derived from cultured cells, there was a strong
agreement between RNA yield from EV preparation and the
total EV number (R2=0.74, p=0.003) (Figure 3A).

GADPH mRNA, 18S rRNA, and hsa-miR-103 levels in
EVs derived from patient sera and cerebrospinal fluid
(CSF)

We next tested whether the abundance of GAPDH mRNA,
18S rRNA, and hsa-miR-103 correlated with RNA yield or EV
number in clinical specimens from glioblastoma patients. The
purity of the EVs isolated from clinical sera or CSF was verified
by electron microscopy (Figure 1). There was no convincing or
consistent correlation between GADPH, 18s rRNA, or miR-103
transcripts and EV particle number in serum (Figure 2) or CSF
(Figure 3). There was little correlation between EV number and
RNA yield in EVs derived from sera derived EVs (R2=0.14,
p=0.04). Modest correlation between RNA yield and EV
number was observed in CSF derived EVs (R2=0.60, p<0.001;
Figure 3B and C).

In summary (Table 2), EV GAPDH mRNA levels correlated
with EV numbers in glioblastoma lines cultured under adherent
conditions, but this correlation was not observed in lines

cultured under neurosphere conditions. On the other hand, EV
miR-103 and 18s RNA levels correlated with EV number in
glioblastoma lines cultured under neurosphere conditions, but
not in lines cultured under adherent conditions. In clinical sera
or CSF, there was no correlation between these reference
transcripts and EV numbers. These discrepancies create
significant uncertainties as to the appropriate reference
transcript for quantitative EV analysis in clinical bio-fluids.
Given these discrepancies and the lack of correlation between
EV GAPDH mRNA, 18S rRNA, or miR-103 and EV number/EV
RNA yield, we propose that EV RNA be quantitated in absolute
terms and normalized to the input EV number. We reasoned
that this method is analogous to determining absolute
quantities of cellular miRNA and normalizing to the input cell
number. Our proposed method prevents arbitrary changes in
miRNA quantitation secondary to random fluctuation in the
levels of the reference transcript.

Using absolute measurements of miRNA normalized to input
EV numbers, we characterized the levels of miR-21, a highly
over-expressed miRNA in glioblastoma [29], in EVs isolated
from glioblastoma neurosphere lines. We reasoned that if EV
miRNA contents reflect the internal milieu of the secreting cell
[34], then miR-21 should be one of the more abundant species
in glioblastoma EVs. Indeed, microarray based miRNA profiling
of EVs derived from two glioblastoma cell lines revealed that
miR-21 is one of the most abundant miRNAs in glioblstoma
EVs [7].

We first characterized EV miR-21 using nine glioblastoma
neurosphere lines. Consistent with published literature, miR-21
was highly expressed in these lines, with quantities that ranged
from 700 to 20,000 copies per cell (Figure 4A, Table 3). miR-21
levels per EV were significantly lower, ranging from 1 copy per
100 to 2,000 EVs (Figure 4B). Nevertheless, miR-21 was

Table 1. Abundance of GADPH mRNA, 18s RNA, and hsa-miR-103 in cultured cell lines and EVs derived from cultured cell
lines.

  GAPDH 18S RNA miR-103

 Cell line Copies/cell Copies per EV Copies/cell Copies per EV Copies/cell Copies per EV
Adherent lines U87MG 6.97 x 102 1.14 per 105 1.29 x 106 1.71 per 103 8.31 x 103 2.13 per 104

 T98G 3.21 x 102 2.02 per 106 2.80 x 105 1.87 per 10 4.42 x 104 7.23 per 104

 LN229 4.52 x 102 1.46 per 103 1.09 x 105 1.81 per 102 1.02 x 105 6.74 per 103

 LN464 3.27 x 102 8.63 per 107 1.21 x 106 6.36 per 104 8.65 x 104 1.26 per 103

 A172 2.91 x 102 2.58 per 106 9.32 x 105 1.35 per 104 1.90 x 104 4.47 per 104

 LN340 5.10 x 102 6.24 per 105 5.13 x 105 1.28 per 103 2.58 x 104 2.82 per 104

 A549 1.03 x 103 1.30 per 104 1.34 x 106 3.19 per 104 3.92 x 104 3.35 per 104

 U2OS 9.06 x 102 1.84 per 104 1.41 x 106 3.84 per 104 7.42 x 104 6.79 per 104

Neurospheres 1123 3.96 x 102 3.93 per 106 3.99 x 106 5.75 per 105 3.68 x 103 2.47 per 104

 326 5.14 x 102 3.36 per 105 6.36 x 106 6.38 per 103 2.13 x 103 6.95 per 104

 83 5.62 x 102 6.39 per 106 6.63 x 106 2.63 per 103 2.15 x 103 9.23 per 105

 30 3.60 x 102 9.24 per 106 4.66 x 106 1.74 per 103 5.16 x 103 8.42 per 104

 AC17 2.92 x 102 9.00 per 106 9.96 x 105 3.85 per 105 3.24 x 103 6.82 per 105

 AC20 1.42 x 102 1.08 per 105 6.13 x 105 5.01 per 104 7.62 x 103 4.03 per 104

 84 2.37 x 102 2.93 per 105 1.03 x 106 1.40 per 103 3.41 x 103 8.16 per 105

 BT70 5.30 x 102 5.43 per 105 2.23 x 106 3.88 per 104 4.11 x 103 3.36 per 105

 CMK3 2.12 x 102 2.95 per 104 6.72 x 105 2.41 per 103 6.53 x 103 1.75 per 104

doi: 10.1371/journal.pone.0078115.t001
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consistently detectable in EVs isolated from all nine lines.
Moreover, the EV miR-21 level correlated with the cellular
miR-21 level (R2=0.50; p<0.05), suggesting that EV miRNA
analysis may afford a window into the physiology of the
secreting cell (Figure 4C).

We also examined the effect of the culturing condition on the
abundance of miR-21 in EVs. To this end, the CMK-3
neurosphere cell line was adapted to growth as adherent
culture in the presence of fetal bovine serum. This
experimental manipulation led to a nine-fold increase in the
cellular level of miR-21. However, the abundance of miR-21 in

secreted EVs was decreased by approximately ten fold (Figure
6). In a reciprocal experiment, adherent U87MG cells were
cultured under neurosphere conditions. This adaptation led to
decreased abundance of miR-21 in both cellular and EV
contents. These results suggest that glioblastoma growth under
neurosphere conditions is associated with decreased cellular
levels of miR-21. While culturing conditions also significantly
impact EV miR-21 level, these effects are less predictable.

Figure 1.  Relative abundance of GAPDH, 18S rRNA, and miR-103 in glioblastoma cell line derived EVs.  (A) GAPDH, 18S
rRNA, and hsa-mir-103 levels in EVs isolated from 11 glioblastoma and 3 non-glioblastoma adherent cell lines, cultured under
serum conditions. Transcript copy number was plotted against total RNA yield extracted from the EVs. (B) GAPDH, 18S rRNA, and
hsa-mir-103 transcript copy number was plotted against the total number of EVs isolated for RNA extraction. (C) Cellular GAPDH
transcript number tightly correlated with the number of cells collected for RNA extraction and (D) the amount of RNA recovered.
doi: 10.1371/journal.pone.0078115.g001
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miR-21 levels in EVs isolated from glioblastoma and
non-oncologic patients

Since miR-21 is present in glioblastoma secreted EVs, if
these EVs eventually reach bio-fluids such as blood or CSF,
then the elevated levels of EV miR-21 in these bio-fluids may
serve to indicate the presence of tumor. This hypothesis pre-
supposes that EVs secreted from normal cells harbor
significantly lowered levels of miR-21 relative to those of
glioblastoma EVs. As a first step toward testing this hypothesis,
we determined whether miR-21 levels in clinical bio-fluids (sera
and CSF) derived from glioblastoma patients differed from
those of non-oncologic patients.

Since EVs bearing tumor specific RNAs have been detected
in blood [7], we tested whether miR-21 levels differed in EVs
derived from the sera of 24 glioblastoma patients differed from
those of 5 non-oncologic patients (2 trauma, 2 subarachnoid
hemorrhage, 1 normal pressure hydrocephalus). On average,
1.96x109 to 1.19x1011 EVs were isolated from 2-5cc of sera.
The level of EV miR-21 ranged from 0.21 to 10.35 copies/EV in
the glioblastoma patients and 0.21 to 14.30 copies/EV in the
non-oncologic patients. No statistically significant difference
was detected between these two groups (Figure 5A).

We hypothesized that the secretion of EV miR-21 by
hematopoietic cells [64] might obscure glioblastoma EV miR-21
in sera. Thus, we analyzed miR-21 levels in EVs from CSF of

glioblastoma (n=13) and non-oncologic patients (n=14). CSF
EV miR-21 ranged from 0.14 to 1.04 copies/EV in glioblastoma
patients and 5.26x10-4 to 1.48x10-1 copies/EV in non-oncologic
patients. The difference between these two groups was
statistically significant at p<0.001 (Figure 5B), suggesting that
CSF EV may be a platform for therapeutic monitoring of tumor
presence. We also noted that the bulk of miR-21 is located
within EVs rather than freely floating in CSF, <10% of total CSF
miR-21 (Figure 5C) was detected in the EV depleted CSF
fraction in samples collected from five independent
glioblastoma patients. In our analysis, we noted that all of the
CSFs derived from non-oncologic patients harbored EV miR-21
level of < 0.25 copy/EV. Of note, the number of EVs as well as
the size distribution of EVs isolated from the bio-fluids of
glioblastoma patients did not significantly differ from those
isolated from non-oncologic patients (Figures 4 and 5).

CSF EV miR-21 analysis in an independent cohort
We next wished determined whether such a threshold can be

utilized to discriminate CSF derived from glioblastoma patients
from those of non-oncologic patients in an independent cohort.
In our initial cohort, the sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
associated with EV miR-21 level of <0.25 copy/EV were 85%,
100%, 100%, and 93%, respectively (Figure 6A). We

Figure 2.  Relative abundance of GAPDH, 18S rRNA, and miR-103 in neurosphere glioblastoma line derived EVs.  (A)
GAPDH, 18S rRNA, and hsa-mir-103 levels in EVs isolated from 9 glioblastoma neurophere lines, cultured under serum-free
conditions. Transcript copy number was plotted against total RNA extracted from the EVs. (B) GAPDH, 18S rRNA, and hsa-mir-103
transcript copy number was plotted against the total number of EVs isolated for RNA extraction.
doi: 10.1371/journal.pone.0078115.g002
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calculated a need for CSF from 30 additional patients (with 15
glioblastoma patients and 15 non-oncologic patients) for
statistical testing of our hypothesis, with type I error set at 0.05
and a power of 0.8 [65].

Through a collaborative network with Emory University and
the University of California San Diego Neurology programs, 29
additional CSF samples were secured (with 15 glioblastoma
specimens and 14 non-oncologic specimens). EVs were

Figure 3.  Relative abundance of GAPDH, 18S rRNA, and miR-103 in EV derived from CSF of glioblastoma and non-
oncologic patients.  (A) GAPDH, 18S rRNA, and hsa-mir-103 levels in EVs isolated from the CSF of 13 glioblastoma and 14 non-
oncologic patients. Transcript copy number was plotted against total RNA extracted from the EVs. (B) GAPDH, 18S rRNA, and hsa-
mir-103 transcript copy number was plotted against the total number of EVs isolated for RNA extraction. The relative abundance of
these transcripts in CSF EVs was approximately 10 fold lower than those of sera EV with abundance ranging between 1 transcript in
1 EV to 1 transcript in 105 EVs.
doi: 10.1371/journal.pone.0078115.g003

Figure 4.  Detection of miR-21 in glioblastoma cell lines secreted EVs.  (A) The expression level of miR-21 was quantitatively
assessed in nine neurosphere glioblastoma lines. (B) The abundance of miR-21 was assessed in EVs derived from nine
neurosphere glioblastoma lines. (C) EV miR-21 levels correlate tightly with cellular miR-21 levels (R2 = 0.50, p<0.01).
doi: 10.1371/journal.pone.0078115.g004
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isolated from these specimens, and miR-21 levels were
determined. In this second and independent cohort, setting EV
miR-21 level of <0.25 copy/EV as the discriminating threshold
for glioblastoma versus non-oncologic patients yielded
sensitivity, specificity, PPV, and NPV of 87%, 93%, 87%, and
86%, respectively (Figure 6B). Receiver Operating
Characteristics (ROC) curves for CSF EV miR-21 as a
biomarker of glioblastoma tumor presence show an AUC of 0.9
and p<0.01 (Figure 6C). In aggregate, these results support
CSF EV miR-21 as a feasible biomarker for the presence of
glioblastoma.

In aggregate, these results suggest that CSF EV miR-21
constitutes a biomarker for the presence of glioblastoma cells.
A corollary of this prediction is that surgical excision of
glioblastoma should be associated with a decrease in CSF EV
miR-21 level. We tested this prediction in a patient who
underwent CSF sampling at the time of glioblastoma surgery
and then at three months after a gross-total resection.
Consistent with our hypothesis, the relative abundance of
miR-21 in CSF EV was decreased by approximately 50-fold
after surgical resection (Figure 6D).

Table 2. Overview of robustness of reference transcripts in
EVs derived from cell lines and bio-fluids.

 Correlation with RNA yield Correlation with EV number

Sample type GAPDH 18S rRNA miR-103 GAPDH 18S rRNA miR-103
Adherent lines + - - - - -
Neurosphere lines - + + - + +

Serum NT NT NT - - -
Cerebrospinal Fluid - - - - - -
No correlation
+. Significant correlation (R2>0.5 and p<0.05)
NT: Not testedmiR-21 levels in EVs derived from glioblastoma cell lines
doi: 10.1371/journal.pone.0078115.t002

Table 3. Abundance of miR-21 in cultured neurosphere
lines and neurosphere derived EVs.

miR-21

Cell line Copies/cell Copies per vesicle
1123 3.87 x 103 1.05 per 103

326 3.36 x 103 1.57 per 103

83 3.40 x 103 6.28 per 104

30 3.83 x 103 1.68 per 103

AC17 5.86 x 103 1.60 per 103

AC20 2.46 x 104 4.37 per 103

84 1.54 x 104 9.38 per 103

BT70 7.14 x 102 4.80 per 104

CMK3 3.60 x 103 3.34 per 103

doi: 10.1371/journal.pone.0078115.t003

Discussion

Analysis of genetic material within glioblastoma secreted
within EVs in bio-fluids represents a unique opportunity for
diagnosis and therapeutic monitoring. EVs isolated from bio-
fluids can encompass exosomes, microvesicles, retrovirus-like
particles (RLPs) and apoptotic bodies [66,67]. While the
mechanisms of their biogenesis may differ, genetic materials
from their originating cells have been detected in all types of
vesicles. Enrichment of miRNA in EV content [9] renders EVs a
particularly attractive platform.

The quantitative assessment of EV miRNAs requires
thoughtful considerations. Our study reveals that commonly
used reference transcripts (GADPH mRNA, 18S rRNA, and
hsa-miR-103) were present at extremely low and variable
levels in EVs. Moreover, there were no consistent correlations
between the level of these transcripts and EV RNA yield or EV
particle numbers (Figure 3 and Figure 2). When comparing the
EV particle numbers and the total amount of RNA extracted,
we noted a strong correlation in systems such where there is
only one source of EV secreting cell (e.g. neurosphere culture;
Figure 3A). Under these conditions, RNA yield serves as an
effective normalization method in place of EV number (Figure
7A and 7B). However, in more complex samples such as
patient CSF, where EVs are likely secreted by multiple cells of
origin, the correlation between EV number and total RNA yield
are significantly lowered (Figure 3C). Because of these
observations, we recommend quantifying EV miRNA in
absolute terms and normalizing to total EV number.

Using this method, we showed that EV miR-21 levels can be
used to differentiate CSF isolated from glioblastoma patients
and CSF from non-oncologic patients. Importantly, our result
was validated using multiple independent CSF collections. It is
important to note that CSF is not routinely collected during the
course of treatment for glioblastoma patients in the U.S. Thus,
while the total number of CSF samples analyzed here is
relatively small, with a total of 28 glioblastoma CSF and 28
non-oncologic CSF samples analyzed, our study represents an
exhaustive analysis of CSF specimens collected by four
independent investigators over a multi-year period. The results
presented here provide a sound basis for a prospective, multi-
center study to validate CSF EV miR-21 as a biomarker for
assessing the presence of glioblastoma.

Recent studies suggest that circulating miRNA can exist in
two compartments: 1) outside of EV where they complex with
Argonaut2, the catalytic component of the RNA-induced
silencing complex (RISC) or high density lipoproteins; and 2)
within EVs [68,69]. We add the finding that the majority of CSF
miR-21 is of EV origin. Additionally, the available data suggests
that genetic material within EVs are quite stable in the CSF
[70]. Thus, isolating CSF EV may enhance the sensitivity of
CSF miRNA based biomarker assays.

miR-21 was previously reported as a CSF biomarker for
glioblastoma burden in a prior study [70], While our overall
conclusion is generally consistent with this previous study, it is
worthwhile noting the differences between the two. First,
Teplyuk et. al. [70] measured the level of miR-21 in total CSF
and not CSF EVs. Second, in the previous study, quantitative
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assessment of miRNA in the CSF was performed using the
relative CT methods using miR-24 and miR-125 as reference
transcripts. We tested whether miR-24 and miR-125 are

adequate reference transcripts for quantitative EV miRNA
analysis. While we observed modest to strong correlations
between miR-24/miR-125 expression and EV RNA yield and/or

Figure 5.  Discrimination of glioblastoma disease status by CSF EV miR-21 analysis.  (A) Comparable levels of miR-21 level
in sera EVs derived from 24 glioblastoma patients and 5 non-oncologic patients. (B) Elevated level of miR-21 in CSF EV derived
from 13 glioblastoma patients relative to 14 non-oncologic patients. (C) miR-21 is detected in CSF EV but not in EV depleted CSF in
samples isolated from five independent glioblastoma patients. Patient 1, 2, 3, 4, and 5 correspond to T2, T7, T10, T12, and T13
respectively from the UCSD glioblastoma cohort.
doi: 10.1371/journal.pone.0078115.g005
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total EV number in cells cultured under neurosphere conditions
(Figure 8A), such correlations were not found in clinical CSF
specimens (Figure 8B). Using criteria established in our study,
these results would suggest that miR-24 and miR-25 are not
adequate reference transcripts for the quantitative miRNA
analysis of CSF EVs. Consistent with this proposition, Teplyuk
et. al. reported that miR-24 and miR-25 were present in
relatively low levels and varied between clinical specimens
[70].

miR-21 expression is not unique to glioblastoma, it has been
detected in endothelial cells [71], normal breast tissue [72],
cervical tissue [73], and hematopoietic cells [74]. While the
expression level of miR-21 in glioblastoma cells are generally
one to two orders of magnitude higher than those found in
normal tissue [34], it is certainly conceivable that the normal
cellular secretion of EV miR-21 may mask the presence of a
small number of glioblastoma EVs containing miR-21. When
EVs isolated from sera were examined, this appeared to have
been the case, as no significant differences in EV miR-21
levels in could be detected between patients with and without
glioblastoma (Figure 5A). However, Wang et. al. previously
reported that plasma levels of miR-21 were significantly altered

in glioblastoma patients compared to normal controls [75]. In
the context of our study, it is possible that EV independent
miR-21 significantly differed between glioblastoma and non-
oncology patients. It is also worthwhile noting the technical
difference in the method of miRNA quantitation between our
study and this previous study [75]. In the previous study, Wang
et al. [75] quantitated miR-21 using the relative CT method, with
murine miR-29 as spike-in control. In contrast, our study
quantitated miR-21 in absolute terms and normalized to the
number of EVs. Both methods harbor inherent advantages and
disadvantages [76]. The optimal method of miRNA quantitation
in bio-fluids remains an unresolved issue and may be bio-fluid
dependent.

In contrast to our sera derived results, miR-21 levels in the
CSF of non-oncologic patients were extremely low by
comparison. The amount of miR-21per EV derived from the
CSF of glioblastoma patients was, on average, ten-fold higher
than those derived from non-oncologic patients (Figure 5B).
These results suggest that the normal tissues in contact with
CSF secrete less miR-21/EV as compared to brain tissue
harboring glioblastoma cells.

Figure 6.  Elevated levels of CSF EV miR-21 are detected in glioblastoma patients.  (A) Sensitivity, specificity, positive
predictive, and negative predictive values associated with EV miR-21 level of <0.25 copy/EV as a discriminating threshold for
glioblastoma disease status in the initial exploratory study. (B) Sensitivity, specificity, positive predictive, and negative predictive
values associated with EV miR-21 level of <0.25 copy/EV as a discriminating threshold for glioblastoma disease status in a
validation study. (C) Receiver Operating Characteristic Curve for EV miR-21 level of <0.25 copy/EV as a discriminating threshold for
glioblastoma disease status. (D) Level of miR-21 in CSF EV from a glioblastoma patient at time of surgery and three months after a
gross-total resection. The relative abundance of miR-21 in CSF EV was decreased by approximately 50-fold after surgical resection.
doi: 10.1371/journal.pone.0078115.g006
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Our studies raised several important questions. Although
EVs in CSF appear to be enriched for miR-21, we have little
data on the sub-speciation of these EVs in terms of size, zeta
potential, shape, or type [67]. Equally uncertain is the origin of
CSF EV miR-21, which may be from glioblastoma or
associated endothelial, ependymal or inflammatory cells
[77,78]. To the extent that we consistently observed the
secretion of miR-21 containing EVs from all glioblastoma cells
examined, we propose that these vesicles contribute to the
presence of hsa-miR-21 in the CSF. However, this remains a
point of uncertainty. Finally, with the emergence of the concept
of glioblastoma subtypes [79], whether subtyping can be
achieved through CSF EV miRNA analysis remains an
important question,

In sum, our study delineates miR-21 levels in absolute terms
as number of copies per EV and provides data suggesting the
utility of CSF EV miRNA analysis as a biomarker for
glioblastoma patients. It is likely that other glioblastoma EV
miRNAs [80] may be similarly exploited as diagnostic
biomarkers.

Supporting Information

Figure S1.  Electron micrograph of EVs isolated from CSF.
EVs were isolated from CSF by differential centrifugation and
analyzed by transmission electron microscopy. Scale bar
represents 200nm in (A) and 100nm in (B). EVs in the size
range of 50-250nm were observed.
(EPS)

Figure S2.  Relative abundance of GAPDH, 18S RNA, and
miR-103 in EV derived from sera of glioblastoma and non-
oncologic patients. GAPDH, 18S rRNA, and hsa-mir-103
transcript copy number was plotted against the total number of
EVs isolated for RNA extraction. The relative abundance of
these transcripts in EV ranged between 1 transcript in 7 EVs to
1 transcript in 106 EVs.
(EPS)

Figure S3.  Correlation between EV number and RNA yield.
For each sample, the RNA yield from EV preparations for (A)
neurosphere cell lines, (B) Serum samples, and (C) CSF
samples were plotted on the X-axis; the input EV number for
these two datasets were plotted on the Y axis. There was
excellent correlation between the RNA yield and the EV
preparation in neurosphere lines, the correlation was poor in
serum samples.
(EPS)

Figure S4.  Abundance of EVs per cc of biofluids. (A)
Abundance of EVs per cc of serum in glioblastoma and non-
oncogenic patients. There was no significant difference
between tumor and control samples. (B) Abundance of EVs per
cc of CSF in glioblastoma and non-oncogenic patients. No
significant differences were observed.

(EPS)

Figure S5.  Average size profile of EVs isolated from
biofluids. (A) Average size distribution of EVs isolated from
serum of glioblastoma and non-oncogenic patients. There was
no significant difference between tumor and control samples.
(B) Average size distribution of EVs isolated from the CSF of
glioblastoma and non-oncogenic patients. No significant size
differences were observed.
(EPS)

Figure S6.  Effects of culturing condition on miR-21
expression in cells and EVs. Glioblastoma cell lines U87MG
and CMK3 were grown under adherent or neurosphere
condition and the miR-21 level in cells or EVs were quantitated.
(EPS)

Figure S7.  Normalization of EV miR-21 by RNA yield. (A)
The expression level of miR-21 was quantitatively assessed in
nine neurosphere glioblastoma lines using total RNA yield as
normalization parameter. (B) Comparison of normalization
method revealed good correlation between normalizing by EV
particle number or total RNA yield in cell culure. (C) Levels of
miR-21 in EVs isolated from glioblastoma and non-oncologic
patients normalized by RNA yield. (D) Correlation between
normalization by EV number or total RNA yield in CSF.
(EPS)

Figure S8.  Relative abundance of miR-24 and miR-125 in
EVs derived from neurosphere glioblastoma cell lines and
CSF of glioblastoma and non-oncologic patients. has-
miR-24 and has-miR-125 levels in EV isolated from from (A) 9
glioblastoma neurophere lines, cultured under serum-free
conditions or (B) from CSF of 13 glioblastoma and 14 non-
oncologic patients were plotted against total RNA extracted
from the EVs or against the total number of EVs isolated for
RNA extraction.
(EPS)

Table S1.  List of primers used.
(DOCX)
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