13 research outputs found

    Study of Carrier Mobilities in 4H-SiC MOSFETS Using Hall Analysis

    No full text
    The channel conduction in 4H-SiC metal–oxide–semiconductor field effect transistors (MOSFETs) are highly impacted by charge trapping and scattering at the interface. Even though nitridation reduces the interface trap density, scattering still plays a crucial role in increasing the channel resistance in these transistors. In this work, the dominant scattering mechanisms are distinguished for inversion layer electrons and holes using temperature and body-bias-dependent Hall measurements on nitrided lateral 4H-SiC MOSFETs. The effect of the transverse electric field (Eeff) on carrier mobility is analyzed under strong inversion condition where surface roughness scattering becomes prevalent. Power law dependencies of the electron and hole Hall mobility for surface roughness scattering are determined to be Eeff−1.8 and Eeff−2.4, respectively, analogous to those of silicon MOSFETs. Moreover, for n-channel MOSFETs, the effect of phonon scattering is observed at zero body bias, whereas in p-channel MOSFETs, it is observed only under negative body biases. Along with the identification of regimes governed by different scattering mechanisms, these results highlight the importance of the selection of substrate doping and of Eeff in controlling the value of channel mobility in 4H-SiC MOSFETs

    The Limits of Post Oxidation Annealing in NO

    No full text

    Measurement of ultrashort laser pulses using single-crystal films of 4-aminobenzophenone

    No full text
    Single-crystal thin-film of an organic second-order nonlinear optical material, 4-aminobenzophenone (ABP), is used to measure the pulsewidth of a Ti-Sapphire laser producing ~45 fs pulses at 1 kHz repetition rate, by the non-collinear second-harmonic generation (SHG) intensity autocorrelation technique. These films are suitable for measurements over a broad wavelength range, down to 780 nm, due to their wide optical transparency. The single-crystal film with thickness (~3 μ m) less than the coherence length requires no phase-matching for efficient broadband SHG. Pulse walk-off due to group-velocity mismatch (GVM) and temporal broadening of the pulses due to group-velocity dispersion (GVD) are found to be negligible. These effects have been estimated for pulse width down to few-cycle pulses (~10 fs), and the analyses show that these films can be used to characterize such ultrashort optical pulses

    Time-resolved photocurrent spectroscopic diagnostics of electrically active defects in AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on Si wafers

    No full text
    Time-resolved photocurrent (TRPC) spectroscopy with a variable-wavelength sub-bandgap light excitation was used to study the dynamics of the decaying photocurrent generated in the heterostructures of the AlGaN/GaN high electron mobility transistors (HEMTs) layers. In AlGaN/GaN HEMTs, reliability of the device is degraded due to the prevalence of current collapse. It is recognized that electrically active deep level defects at the surface/interfaces and the bulk in the HEMTs layers can contribute to the unwanted current collapse effect. Therefore, it is of great importance to analyze the deep level defects if the reliability of the HEMTs device is to be improved. In this research, TRPC spectroscopy was used to elucidate the origin and nature of the deep level defects by analyzing the time evolution of the photocurrent decay excited at different wavelengths of light. The two devices that show similar characteristics for wavelength-dependency on photocurrent generation were chosen, and TRPC spectroscopy was conducted on these devices. Although the two samples show similar characteristics for the wavelength-dependency on photocurrent generation, they exhibited dissimilar time-dependent photocurrent decay dynamics. This implies that TRPC spectroscopy can be used to distinguish the traps which have different origins but have the same de-trapping energy.Scopu

    Thin PSG process for 4H-SiC MOSFET

    No full text
    The use of phosphorous as a passivating agent for the SiO2/4H-SiC interface increases the field effect channel mobility of 4H-SiC MOSFET to twice the value, 30-40cm2/V-s, that is obtained with a high temperature anneal in nitric oxide (NO). A solid SiP2O7 planar diffusion source is used to produce P2O5 for the passivation of the interface. Incorporation of phosphorous into SiO2 leads to formation of phosphosilicate glass (PSG) which is known to be a polar material causes device instability. With a new modified thin phosphorous (P) passivation process, as described in this abstract, we can improve the stability of MOSFETs significantly with mobility around 75cm2/V.s
    corecore