18 research outputs found

    Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide

    No full text
    We investigated the effects of exogenous application of jasmonic acid (JA) and nitric oxide (NO) on growth, antioxidant metabolism, physio-biochemical attributes and metabolite accumulation, in tomato (Solanum lycopersicum L.) plants exposed to salt stress. Treating the plants with NaCl (200 mM) resulted in considerable growth inhibition in terms of biomass, relative water content, and chlorophyll content, all of which were significantly improved upon application of JA and NO under both normal and NaCl-stress treatments. Salt treatment particularly 200 mM NaCl caused an apparent increase in electrolyte leakage, lipid peroxidation, and hydrogen peroxide production, which were reduced by exogenous application of JA and NO. Salt treatment triggered the induction of antioxidant system by enhancing the activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Application of JA and NO separately as well as in combination caused a significant improvement in activities of SOD, CAT, APX, and GR activities. JA and NO either applied individually or in combination boosted the flavonoid, proline and glycine betaine synthesis under NaCl treatments. In conclusion, the exogenous application of JA and NO protected tomato plants from NaCl-induced damage by up-regulating the antioxidant metabolism, osmolyte synthesis, and metabolite accumulation

    Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content

    No full text
    This study examined the protective effect of Zn on salt-stressed Brassica juncea plants using some key morphological and biochemical attributes at different developmental stages (30, 60, and 90 days after treatment [DAT]). Salt stress (200 mM) caused suppression in plant height, root length, and dry weight by 58.35%, 41.15%, and 53.33%, respectively, at 90 DAT, but Zn application improved these variables by 15.52%, 16.59%, and 11.45%, respectively. Furthermore, 200 mM NaCl decreased total chlorophyll by 45.32% and relative water content by 27.62% at 90 DAT, whereas Zn application compensated the decrease in the levels of both variables. NaCl (200 mM) increased H2O2, malondialdehyde, and electrolyte leakage by 70.48%, 35.25%, and 68.39%, respectively, at 90 DAT, but Zn supplementation appreciably reduced these variables. Except for catalase, enzymatic antioxidant activity increased under NaCl stress. Zn application with salt further increased the activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione-S-transferase by 33.51%, 9.21%, 10.98%, 17.46%, and 12.87%, respectively, at 90 DAT. At 90 DAT, salt stress increased flavonoids by 24.88%, and Zn supply by a further 7.68%. Overall, Zn mitigated the adverse effects of salt stress through osmotic adjustment, as well as by modulating the oxidative defense system and flavonoid contents

    Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review

    No full text
    The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies

    Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium

    No full text
    Possible involvement of calcium (Ca) and zinc (Zn) in mitigation of salt (NaCl) stress-induced oxidative damage in Brassica juncea was investigated. Salt stress (200 mM NaCl) reduced leaf pigment synthesis and some key photosynthetic attributes including stomatal conductance and internal CO2 concentration. Exogenous application of Ca and Zn resulted in enhanced growth possibly by induction of the antioxidant defense system, resulting in improved redox state thereby favoring growth improvement. Proline accumulation (3.39-fold) was stimulated by exogenous application of Zn and Ca causing improvement in growth through enhancement in relative water content (78.46%) and increased flavonoid accumulation (86.19%). NaCl stress enhanced the hydrogen peroxide (H2O2), malondialdehyde and methylglyoxal content by 3-fold, 1.51-fold, and 2.98-fold, respectively, however, supplementation of Ca and Zn individually as well as in combination reduced the accumulation to an appreciable level. Ca and Zn treatment helped Brassica juncea plants to strengthen the antioxidant system and glyoxalase system and also enzymes of ascorbate-glutathione (AsA-Glu) cycle for better protection to membranes from reactive oxygen species. Moreover, Ca and Zn supplementation reduced the salt-induced damage by maintaining Na/K ratio through improved K uptake

    Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system.

    No full text
    The protective role of exogenously applied kinetin (10 μM KN, a cytokinin) against the adverse effects caused by NaCl-induced (150 mM) stress in Solanum lycopersicum was investigated. Application of KN significantly enhanced growth and biomass production of normally grown plants (non-stressed) and also mitigated the adverse effect of NaCl on stressed plants to a considerable extent. Among the examined parameters, chlorophyll and carotenoid contents, photosynthetic parameters, components of the antioxidant system (both enzymatic and non-enzymatic), osmotica accumulation, and mineral uptake exhibited a significant increase following the application of KN. Furthermore, KN application reduced the generation of reactive free radical hydrogen peroxide, coupled with a significant reduction in lipid peroxidation and an increase in membrane stability. The activities of antioxidant enzymes, and glyoxylase system were found to be promoted in plants exposed to NaCl, and the activities were further promoted by KN application, thereby protecting S. lycopersicum plants against NaCl-induced oxidative damage. Further strengthening of the antioxidant system in KN supplied plants was ascribed to regulation of ascorbate-glutathione cycle, phenols and flavonoids in them. The levels of proline and glycine betaine increased considerably in KN-treated plants, thereby maintaining relative water content. Moreover, exogenous KN application reduced the inhibitory effects of NaCl on K+ and Ca2+ uptake, which resulted in a considerable reduction in tissue Na+/K+ ratio
    corecore