15 research outputs found

    Molecular fragmentation of wheat-germ agglutinin induced by food irradiation reduces its allergenicity in sensitised mice

    Get PDF
    WGA, an agglutinin from wheat germ which is largely responsible for many of wheat's allergies, was used as a model to investigate the action of ionising radiation on WGA's anti-nutritive effects in sensitised mice. Based on the molecular structure, the present study also examined the structural modification of WGA in relation to the range of dose. Structural integrity was monitored using HPLC, fluorescence spectrometry and circular dichroism. Results showed a loss of intrinsic activity and the formation of insoluble amorphous aggregates with a lack of native conformational structures after irradiation. Current findings suggest that the allergenic epitopes of WGA became less active and antigenic after high-dose radiation. the reduction of cytokines typical of allergic reactions, with decreased lymphocytic infiltrate, was observed in the gut of mice given irradiated versus native WGA. Food irradiation proved effective and safe in combating immunological and allergic effects of WGA. (C) 2011 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Ministerio da Ciencia e Tecnologia (Brazilian)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE)Univ Fed Pernambuco, Dept Bioquim, Recife, PE, BrazilUniv Fed Pernambuco, Dept Histol & Embriol, Recife, PE, BrazilUniv Fed Pernambuco, Dept Biofis & Radiobiol, Recife, PE, BrazilUniv Fed Pernambuco, Dept Antibiot, Recife, PE, BrazilUniv Estadual Oeste Parana, Ctr Engn & Ciencias Exatas, Toledo, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilWeb of Scienc

    Antimicrobial, Antiproliferative and Proapoptotic Activities of Extract, Fractions and Isolated Compounds from the Stem of Erythroxylum caatingae Plowman

    Get PDF
    In the study, we have examined the antitumor and antimicrobial activities of the methanol extract, the fractions, a fraction of total alkaloids and two alkaloids isolated from the stem of Erythroxylum caatingae Plowman. All test fractions, except the hexane fractions, showed antimicrobial activity on gram-positive bacteria and fungi. The acetate: methanol (95:5), acetate, chloroform and hexane fractions show the highest cytotoxicity activity against the NCI-H292, HEp-2 and K562 cell lines using MTT. The absence of hemolysis in the erythrocytes of mice was observed in these fractions and 6β-Benzoyloxy-3α-(3,4,5- trimethoxybenzoyloxy) tropane (catuabine B). Staining with Annexin V-FITC and JC-1 was used to verify the mechanism of action of the compounds of E. caatingae that showed cytotoxicity less than 30 μg/mL in leukemic cells. After 48 h of incubation, we observed that the acetate: methanol (95:5), acetate, and chloroform fractions, as well as the catuabine B, increased in the number of cells in early apoptosis, from 53.0 to 74.8%. An analysis of the potential of the mitochondrial membrane by incorporation of JC-1 showed that most cells during incubation of the acetate: methanol (95:5) and acetate fractions (63.85 and 59.2%) were stained, suggesting the involvement of an intrinsic pathway of apoptosis

    In vitro and in vivo antitumor effects of the flavonol glycosides isolated of Herissantia crispa (L.) Brizicky

    Get PDF
    This paper describes the cytotoxic and antitumoral activities of kaempferol 3-O-(6”-O-E-pcoumaroyl)-β-D-glucopyranoside (tiliroside), kaempferol 3,7-di-O-α-L-rhamnoside (dhiramnoside) and of the mixture of sitosteryl-3-O-β-D-glucopyranoside and stigmasteryl-3-O-β-D-glucopyranoside (GM) isolated of the Herissantia crispa. The compounds did not present cytotoxic activity against NCI-H292, HEp-2 and KB cells. In vivo, dhiramnoside did not present significant inhibitory activity of the growth of sarcoma 180 when compared with the control group; however, tiliroside and GM-treated animals showed a high inhibition rate in the growth of the tumor. Tiliroside inhibits significantly the growth of the carcinoma of Ehrlich. In conclusion, tiliroside exhibited promising antitumor effects without an expressive toxicity.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Atividade antimicrobiana de Lippia alba (Mill.) N. E. Brown (Verbenaceae)

    No full text
    Lippia alba (Mill.) N. E. Brown (Verbenaceae), amplamente distribuída em todo o território brasileiro, é conhecida popularmente como erva cidreira e utilizada na medicina popular como analgésica, febrífuga, antiinflamatória, antigripal e nas afecções hepáticas. Extratos brutos foram preparados a partir de plantas cultivadas, de modo padronizado, em horta medicinal do Laboratório de Fitoterapia da Empresa Pernambucana de Pesquisa Agropecuária (IPA) para a verificação da atividade antimicrobiana, in vitro, pelo método de difusão em disco de papel. A concentração inibitória mínima (CIM) foi determinada para os extratos que exibiram melhores atividades. Os resultados obtidos mostraram que os extratos clorofórmico, acetônico e etanólico da raiz foram ativos frente a Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Mycobacterium smegmatis, Candida albicans e Monilia sitophila e os extratos hexânicos, etanólicos e metanólicos das folhas inibiram S. aureus, M. luteus, B. subtilis, M. smegmatis e M. sitophila. A menor concentração inibitória (CIM = 31,2 µg/mL), foi obtida para o extrato clorofórmico da raiz frente a B. subtilis e M. luteus

    Application of a Biosurfactant Produced by Bacillus cereus UCP 1615 from Waste Frying Oil as an Emulsifier in a Cookie Formulation

    No full text
    Biosurfactants have attracted increasing interest from the food industry due to their emulsifying, foaming and solubilizing properties. However, the industrial use of microbial biosurfactants has been hampered by the high production costs related mainly to the use of expensive substrates. The search for low-cost alternative substrates is one of the strategies adopted to overcome this problem. In the present study, a biosurfactant produced by Bacillus cereus UCP1615 by fermentation in a medium supplemented with waste frying soybean oil as a low-cost substrate was evaluated as a bioemulsifier for the production of cookies. The biosurfactant was evaluated for its emulsifying capacity against different vegetable oils, antioxidant activity and toxicity, demonstrating favorable results for use in food. In particular, it showed satisfactory antioxidant activity at the tested concentrations and no cytotoxicity to the L929 (mouse fibroblast) and Vero (monkey kidney epithelial) cell lines using the MTT assay. The biosurfactant was then added at different concentrations (0.25%, 0.5% and 1%) to a standard cookie dough formulation to evaluate the physicochemical characteristics of the product. Cookies formulated with the biosurfactant exhibited similar energy and physical characteristics to those obtained with the standard formulation but with a lower moisture content. The biosurfactant also ensured a good preservation of the cookie texture after 45 days of storage. These results suggest that the biosurfactant has a potential application as a green emulsifier in accordance with the demands of the current market for biocompatible products

    Cytotoxic activity of marine algae against cancerous cells

    Get PDF
    This paper presents an investigation on the cytotoxic activity in human tumor cell from dichloromethane, chloroform, methanol, ethanol, water extracts, and hexane and chloroform fractions from green, brown and red algae collected at Riacho Doce Beach, north coast of Alagoas, Brazil, against the cancer cells K562 (chronic myelocytic leukemia), HEp-2 (laryngeal epidermoid carcinoma) and NCI-H292 (human lung mucoepidermoid carcinoma) through the MTT colorimetric method. The dichloromethane extract and chloroform fraction of Hypnea musciformis showed the best cytotoxic activity against K562 (3.8±0.2 µg.mL-1 and 6.4±0.4 µg.mL-1, respectively). Dichloromethane extracts of Dictyota dichotoma (16.3±0.3 µg.mL-1) and the chloroform fraction of H. musciformis (6.0±0.03 µg.mL-1) and chloroform fraction of P. gymnospora (8.2±0.4) were more active against HEp-2 as well as ethanol extracts of P. gymnospora (15.9±2.8 µg.mL-1) and chloroform fraction of H. musciformis (15.0±1.3 µg.mL-1) against the cell NCI-H292. The constituents with higher anticancer action are present in the extracts of dichloromethane and chloroform and in the chloroform fraction of H. musciformis, Digenea simplex, P. gymnospora, and D.dichotoma. In the case of the seaweed S. vulgare, the anticancer constituents are present in the aqueous extract

    Production of cupcake-like dessert containing microbial biosurfactant as an emulsifier

    No full text
    This work describes the application of the biosurfactant from Candida bombicola URM 3718 as a meal additive like cupcake. The biosurfactant was produced in a culture medium containing 5% sugar cane molasses, 5% residual soybean oil and 3% corn steep liquor. The surface and interfacial tension of the biosurfactant were 30.790 ± 0.04 mN/m and 0.730 ± 0.05 mN/m, respectively. The yield in isolated biosurfactant was 25 ± 1.02 g/L and the CMC was 0.5 g/L. The emulsions of the isolated biosurfactant with vegetable oils showed satisfactory results. The microphotographs of the emulsions showed that increasing the concentration of biosurfactant decreased the oil droplets, increasing the stability of the emulsions. The biosurfactant was incorporated into the cupcake dessert formulation, replacing 50%, 75% and 100% of the vegetable fat in the standard formulation. Thermal analysis showed that the biosurfactant is stable for cooking cupcakes (180 °C). The biosurfactant proved to be promising for application in foods low in antioxidants and did not show cytotoxic potential in the tested cell lines. Cupcakes with biosurfactant incorporated in their dough did not show significant differences in physical and physical–chemical properties after baking when compared to the standard formulation. In this way, the biosurfactant has potential for application in the food industry as an emulsifier for flour dessert
    corecore