37 research outputs found

    Approaching the precursor nuclei of the third r-process peak with RIBs

    Get PDF
    The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary 238U beam at GSI we were able to measure such properties for several neutron-rich nuclei from 208Hg to 218Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties connected with the eta-decay rates and with beta-delayed neutron emission is illustrated on the basis of r-process network calculations. In order to obtain a reasonable reproduction of the third r-process peak, it is expected that both half-lives and neutron branching ratios are substantially smaller, than those based on FRDM+QRPA, commonly used in r-process model calculations. Further measurements around N 126 are required for a reliable modelling of the underlying nuclear structure, and for performing more realistic r-process abundance calculations.Postprint (published version

    The BRIKEN Project: extensive measurements of Ăź-delayed neutron emitters for the astrophysical r process

    Get PDF
    An ambitious program to measure decay properties, primarily Ăź-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.Postprint (published version

    New accurate measurements of neutron emission probabilities for relevant fission products

    Get PDF
    We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations.Postprint (published version

    First determination of Ăź -delayed multiple neutron emission beyond A=100 through direct neutron measurement: the P2n value of Sb 136

    Get PDF
    Background: Ăź-delayed multiple neutron emission has been observed for some nuclei with A=100, being the 100Rb the heaviest Ăź2n emitter measured to date. So far, only 25P2n values have been determined for the Ëś300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of astrophysical nucleosynthesis processes, such as the r-process, and safety inputs for nuclear reactors.Postprint (published version

    Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    Get PDF
    Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are Ăźn emitters. The initial abundance distribution is shaped by the decay half-life T1/2, but the neutron emission affects the final abundances in two ways: on the one hand it shifts the decay path to lower masses and on the other hand it provides a source of neutrons for late captures that will shift it in the opposite way. Thus, a good knowledge of Pn and T1/2 values of the nuclei between the line of stability and the r-process path is needed for a correct understanding of the observed abundances. Besides the astrophysical interest, the measurement of new Pn values and half-lives is also useful for refining nuclear structure models, constraining parameters of the models and testing Ăź-strength functions [3]. Our current understanding of the process of Ăź-delayed multiple neutron emission, as well as the competition between different open channels (gamma, one-neutron, two-neutron, etc), is incomplete because of the scarcity of experimental data. With these ideas in mind, the BRIKEN (Beta-delayed-neutron-measurements at RIKEN) collaboration was established, with the aim of greatly improving the quantity and quality of data the decays of very neutron-rich nuclei close to the r-process path.Postprint (published version

    First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Get PDF
    In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample. (C) 2016 Elsevier B.V. All rights reserved.Postprint (author's final draft

    First tests of the applicability of Îł-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Get PDF
    In this work we explore for the first time the applicability of using γ-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a 197Au sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.España, Ministerio de Economía y Competitivdad FPA2011-24553España, Ministerio de Economía y Competitivdad FPA2013-45083-PEspaña, Ministerio de Economía y Competitivdad SEV-2014-039

    Total Absorption Spectroscopy Study of Rb-92 Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    Get PDF
    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. Rb-92 makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied Rb-92 decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed

    First results from the HENSA/ANAIS collaboration at the Canfranc Underground Laboratory

    Get PDF
    The HENSA/ANAIS collaboration aims for the precise determination of the neutron flux that could affect ANAIS-112, an experiment looking for the dark matter annual modulation using NaI(Tl) scintillators. In this work, the first measurements of the neutron flux and Monte Carlo simulations of the neutron spectrum are reported.Peer ReviewedPostprint (published version

    Measuring the Ăź-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region

    Get PDF
    The ß-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing ß-decay half-life (T1/2) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and ß-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A ˜ 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of 168Sm and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167–172.Peer ReviewedPostprint (published version
    corecore