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Abstract

The β-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were
measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and
the BRIKEN neutron detector array. The existing β-decay half-life (T1/2) database was significantly increased
toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data
not only constrain the theoretical predictions of half-lives and β-delayed neutron-emission probabilities, but also
allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A≈ 160 in
the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty
quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the
rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight
into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has
identified the half-lives of 168Sm and of several gadolinium isotopes as some of the key variables among the
current experimental data to understand the remaining abundance uncertainty at A= 167–172.

Unified Astronomy Thesaurus concepts: R-process (1324); Nucleosynthesis (1131); Nuclear physics (2077)

1. Introduction

About half of the elemental abundances heavier than iron are
the result of the rapid neutron capture process (r-process) in
which neutron capture, β-decay, and many other reactions
occur over a timescale of seconds (Burbidge et al. 1957;
Cameron 1957; Cowan et al. 2021). This process requires high

The Astrophysical Journal, 936:107 (18pp), 2022 September 10 https://doi.org/10.3847/1538-4357/ac80fc
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

mailto:ggkiss@atomki.hu
mailto:saito@triumf.ca
http://astrothesaurus.org/uat/1324
http://astrothesaurus.org/uat/1131
http://astrothesaurus.org/uat/2077
https://doi.org/10.3847/1538-4357/ac80fc
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac80fc&domain=pdf&date_stamp=2022-09-06
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac80fc&domain=pdf&date_stamp=2022-09-06
http://creativecommons.org/licenses/by/4.0/


neutron densities in excess of 1020 neutrons/cm3 in explosive
stellar environments. Accordingly, for a long time, the two
favorite candidates have been core-collapse supernovae
(CCSN) and neutron-star mergers (for a review, see Cowan
et al. 2021).

Observations of galactic halo stars have revealed that the
abundance patterns of heavy (A� 56) elements show consistent
signatures of the solar system r-process abundances (Cowan &
Sneden 2006). This suggests that these old stars were polluted
by prior r-process events in which the heavy element
abundance pattern is robustly reproduced. Moreover, spectro-
scopic studies of the oldest stars in our galaxy and in
neighboring dwarf galaxies (see, e.g., Reichert et al. 2020)
suggest that the r-process must have occurred before neutron-
star mergers would have been able to contribute significantly to
the observed abundances. These observations mean that CCSN
are one possible site of the r-process. Recent work showed that
magnetorotational supernovae are able to synthesize a
sufficient amount of heavy elements (Winteler et al. 2012;
Mösta et al. 2018; Siegel et al. 2019; Yong et al. 2021).

On the other hand, the detection of the gravitational wave
signal GW170817 triggered by a binary neutron-star merger
event by the LIGO/Virgo detectors allowed performing
detailed observation of its electromagnetic counterpart
AT2017gfo (Abbott et al. 2017a, 2017b). The light curve of
this event (kilonova), powered by the radioactive decays of
exotic neutron-rich nuclei, provided the first direct evidence for
the occurrence of the r-process in a neutron-star merger (Kasen
et al. 2017). However, to fully understand these observations
and r-process nucleosynthesis, much more detailed nuclear
physics information is needed.

The main signature of the solar r-process abundance
distribution are two large abundance peaks, located at
A≈ 130 and A≈ 195, which originate from the increased
stability at the neutron shell closures N= 82 and N= 126. A
smaller abundance peak exists in between these two peaks
around A≈ 160, which is known as the “rare-earth peak”
(REP). Since this small abundance peak is located in between
the neutron shell closures, other mechanisms must play a key
role in synthesizing these isotopes.

Indeed, while the two main peaks form during the (n,
γ)↔ (γ, n) equilibrium, the REP takes shape in later phases of
the r-process after the temperature and the density of available
neutrons significantly drop and the material starts to decay back
to stability (freeze-out). According to this picture, under-
standing the synthesis of the lanthanides in this mass region
may allow us to probe the detailed conditions of the freeze-out
and the mechanisms of the r-process that robustly reproduce
the abundance pattern occurring in stars over a wide range of
metallicities (Surman et al. 1997; Mumpower et al. 2012).

The formation of the REP is sensitive to variables that
control the neutron density and neutron-to-seed ratio in the late
stages of the r-process, such as the timescale for the expansion
of the material. However, these astrophysical conditions are
entangled with nuclear physics processes that provide addi-
tional neutrons, of which β-delayed neutron emissions can be a
main contributor (Arcones & Martínez-Pinedo 2011). The mass
region and nuclei responsible for the formation of the REP has
previously been inferred (Mumpower et al. 2012). However,
the most important nuclei lie about 10–15 mass units away
from the valley of stability, and the experimental knowledge of

β-decay properties for these neutron-rich isotopes was very
limited so far.
Here we contribute to a more reliable r-process modeling by

measuring the β-decay properties of 28 isotopes of Pm, Sm,
Eu, and Gd. The β-delayed one-neutron-emission probabilities
(P1n values) of these 28 lanthanide isotopes have been
measured for the first time. Additionally, we have extended
the data of measured β-decay half-lives (T1/2) significantly
toward more neutron-rich species. The new data have been
compared to theoretical models and used as inputs for the r-
process abundance calculations.

2. Experimental Approach

The exotic neutron-rich 159–166Pm, 161–168Sm, 165–170Eu, and
167–172Gd isotopes were produced at RIKEN Nishina Center by
bombarding a 5 mm thick 9Be target with a 345MeV/nucleon
238U primary beam with an intensity of about 60 pnA. The
energy loss (ΔE), magnetic rigidity (Bρ), and time of flight
(ToF) of the ions entering the large-acceptance BigRIPS
separator were measured by multisampling ionization chambers
(MUSIC), parallel-plate avalanche counters (PPACs), and
plastic scintillators located in various focal planes of the
beamline. Accordingly, the fission fragments were selected and
identified using the standard ΔE–Bρ-ToF method (Fukuda
et al. 2013).
The radioactive ions were implanted in the AIDA implant-

ation detector (Griffin et al. 2015) after adjusting their kinetic
energy with aluminum degraders placed at the F11 focal point
of the BigRIPS separator. AIDA consists of a stack of six
double-sided silicon strip detectors (DSSSDs). Each DSSSD
has a thickness of 1 mm and an area of 71.68 mm× 71.68 mm,
with 128× 128 strips. Correlations between implantation and
β-decay events were performed by identifying events in which
the area of the decay event cluster overlapped with or was
adjacent to the area of an implantation event cluster. In the
setup, a 10 mm thick plastic scintillation detector was mounted
behind the silicon stack as veto for the low-mass particles that
pass through. The AIDA implantation detector was centered in
the BRIKEN neutron counter (Tarifeño-Saldivia et al. 2017),
which consisted of 140 3He-filled proportional counters
embedded in a large polyethylene moderator matrix. Two
CLARION-type clover detectors (Gross et al. 2000) were
inserted horizontally from the left and right sides into holes in
the matrix that allowed facing the center of the stack of
DSSSDs to enable neutron-γ coincidences. Gamma-ray decay
data was recorded, but has not been analyzed for this work.
The neutron detection efficiency of the BRIKEN neutron

counter has been determined by Monte Carlo simulations (M.
Pallas & A. Tarifeño-Saldivial 2022, in preparation) and
validated by experimental measurements with a 252Cf neutron
source (Pallas et al. 2022). For beta-delayed neutron emitters
with low or moderate Qβn windows (Qβn � 6 MeV), a nominal
average neutron detection efficiency of 66.8± 2.0% has been
determined (Tolosa-Delgado et al. 2019). This value is also
used for the present analysis because the isotopes under study
show Qβn values typically lower than 6MeV. Further details on
the BRIKEN detector and analysis techniques can be found in
Rasco et al. (2018) and Tolosa-Delgado et al. (2019). We note
that (as discussed in Yokoyama et al. 2019), when the neutron
energy distribution of the (here: lanthanide) isotopes is not
known, the neutron detection efficiency—together with the
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statistical uncertainty—is the dominant contribution to the error
of the P1n values.

The BigRIPS spectrometer, AIDA, and the BRIKEN
detector were run with independent data acquisition systems
(DAQ). To combine the information from the three DAQs, the
absolute time-stamps were synchronized using common signals
distributed to all three systems.

3. Data Analysis and Results

The region of interest of the present experiment is shown in
Figure 1. The analysis method implemented in this study to
determine T1/2 and P1n is detailed in the following paragraphs.
This method is inspired by the analysis method described in
Tolosa-Delgado et al. (2019).

The half-lives were obtained through binned maximum
likelihood fitting of the time distributions of implant-β (i-β)
correlations, using a sum of Bateman equations accounting for
the activity of the parent, daughter, granddaughter, and great-
granddaughter (where applicable) nuclei, and the β-delayed
neutron branch of the decay chain. The random β-decay events
were derived from the backward-time distributions.

Figure 2 shows the time distribution of i-β correlations of
170Gd. The lines correspond to the activity of the decay parent
170Gd (green), the daughter 170Tb (blue), the granddaughter
170Dy (pink), the background (red), and the β-delayed neutron
branch (yellow and turquoise), respectively. The data not
measured in this experiment were taken from Wu et al. (2017)
and from the ENSDF database.

The number of the neutron-gated β-decay events was
derived by fitting an exponential function of the background-
subtracted time distribution of implant-β-neutron (i-β-n)
correlations. When the statistics was low (below 50 neutrons),
numerical integration was used to derive the number of β-
delayed neutrons.

The studied isotopes can be divided into three groups based
on how the P1n value was determined. The Qβn values of the
lighter REP isotopes are typical below a few hundred keV (e.g.,
Qβn = 612± 11 keV for 159Pm), or this decay channel might
be even closed (Qβn< 0 keV, e.g., for 161,162Sm or 167−169Gd).
The number of the neutron-gated β-decay events for these
isotopes was derived by numerical integration and was always
found to be consistent with zero. Accordingly, only upper
limits for the β-delayed neutron-emission probabilities could be
derived.

The number of the neutron-gated β-decay events in the case
of several heavier isotopes (e.g.: 161−163Pm and 166−167Eu) was

derived not only by numerical integration but also by fitting an
exponential function of the background-subtracted time
distribution of implant-β-neutron (i-β-n). Always consistent
results, with differences well below the statistical uncertainties,
were obtained. Figure 3 shows the time distribution of the
measured i-β-n correlations after implanting 162Pm isotopes
into AIDA. The lines correspond to the fit function (black)
including the exponential component (green) and a fixed
background (red) extracted from a linear fit to the backward-
time distribution of i-β-n correlations.
Only a few hundred (or even fewer) ions of the most

neutron-rich isotopes (166Pm, 167,168Sm, 170Eu, and 170−172Gd)
were implanted in the AIDA detector. Accordingly, the number
of the measured i-β-n correlations were typically very low (e.g.,

Figure 1. Part of the chart of isotopes showing the nuclei whose β-decay was
studied in this work. Nuclei whose half-lives have been determined for the first
time are indicated by gray boxes. The yellow numbers indicate the number of
detected β-decays. Isotopes where β-delayed neutron emission is energetically
forbidden are indicated by orange mass numbers and symbols.

Figure 2. Fit to implant-β-particle detection time correlation histograms for the
decay of 170Gd. The black line represents the total fit function, and the red line
shows the uncorrelated background. The green, blue, and purple lines indicate
the contributions of the parent, the daughter, and the granddaughter activity,
respectively.

Figure 3. Fit to implant-β-1n time correlation histograms for the decay of
162Pm. The black line represents the total fit function, the red and blue lines
show the correlated and uncorrelated background, respectively, and the green
line indicates the parent decay.
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fewer than 15 events in the decay chains of 165,166Pm nuclei),
and the statistical errors exceed 30%. Furthermore, in these
cases, the daughter isotope is typically a delayed neutron
emitter with moderate emission probability. For these exotic
isotopes, as a conservative estimate, only upper limits—
calculated with a 95% confidence level—for the P1n values
were derived assuming that all measured neutrons belong to the
decay of the parent nucleus.

Figure 4 shows the measured half-lives compared to recent
literature data (Wu et al. 2017) and to theoretical predictions of
the FRDM2012+QRPA+HF, RHB+QRPA, and pnFAM
models, respectively (Marketin et al. 2016; Möller et al.
2019; Ney et al. 2020). Furthermore, Figure 5 shows the
derived neutron-emission probabilities compared with theor-
etical predictions calculated using the FRDM2012+QRPA
+HF, RHB+QRPA, and pn-RQRPA+HF models (Marketin
et al. 2016; Möller et al. 2019; Minato et al. 2021). Table 1 lists
the resulting T1/2 and P1n values of all isotopes studied in the
present work.

Figure 4 shows that the half-lives agree overall within a
factor of three, but it shows some deficiencies for each model.
The pnFAM model of Ney (2020) provides longer half-lives in
general. The RHB+QRPA from Marketin (2016) almost
perfectly reproduces our experimental values for Pm
(Z = 61) and Sm (Z = 62), but tends to overpredict the results
for Eu (Z = 63) and Gd (Z = 64). The FRDM2012+QRPA
+HF model underpredicts the half-lives for the Pm chain, but
seems to fit the other three isotopic chains well, apart from a
visible kink at N= 105.

The P1n value comparison in Figure 5 shows that for more
neutron-rich odd-Z nuclei, the theoretical predictions generally
overestimate the P1n values, whereas the trend is inverted for
even-Z nuclei in the Sm and Gd chains. Interestingly, the
theoretical predictions for Gd (Z = 64) indicate close to zero
values in our mass range, while our measurements (although
they are all upper limits) show that beyond 171Gd (N = 107), a
strong neutron-emission branch is probable. Our data also show
that the unusual kink that the FRDM2012+QRPA+HF model
predicts for 167,168Eu (N = 104,105) is not reproduced by
our data.

This comparison shows the importance of experimental
measurements along isotopic chains toward the most neutron-
rich nuclei because theoretical models cannot (yet) consistently
reproduce the trends. The reason for the discrepancy between
the theoretical predictions and the experimental data is most
probably the inaccurate knowledge of the Gamow-Teller
transition strengths. Accordingly, it is essential to refine
theoretical models to increase the precision of the astrophysical
simulations.
It should be noted that isomeric states are expected in this

mass region (see, e.g., Patel et al. 2017). In order to account for
this source of uncertainty, a wide-range variation of fitting
variables was executed, including the fitting range of time
correlations (starting and end point varied independently), and
the energy threshold for β-events. A significant dependence on
the starting or the end point of the fitting curve indicates either
isomeric states in the decay chain or nuclides with half-lives
differing from literature values. Regardless of the source of this
discrepancy, the reported half-life values include asymmetric
systematic uncertainties calculated from the deviation of the
varied fit results. When these effects are suspected, we mark
this with asterisks in Table 1. These isotopes are 160,163Pm,
165Eu, and 169Gd.

4. Astrophysical Implication of the Experimental Results

Several authors have proposed that during the r-process
freeze-out, the competition between β−-decays and neutron
captures shape the REP while the material decays back to
stability (Surman et al. 1997; Surman & Engel 2001; Arcones &
Martínez-Pinedo 2011; Mumpower et al. 2012). Neutron
emission following β−-decays of neutron-rich nuclei may also
have a significant impact on the abundance pattern by providing
additional neutrons to the environment and changing the mass
number of the nuclide. Therefore, it is important to understand
the relation between the r-process abundance pattern and nuclear
observables, such as β-decay half-lives (T1/2) and β-delayed
neutron-emission probabilities (Pn values).

4.1. Method

With respect to the current experimental values and their
uncertainties, we perform an uncertainty quantification and a

Figure 4. Experimental half-lives derived in the present work (black squares)
and taken from the literature (Wu et al. 2017; red circles). Lines show the
theoretical values from three models (Marketin et al. 2016; Möller et al. 2019;
Ney et al. 2020).

Figure 5. Experimental P1n values derived in this work. Lines show the
theoretical values from three models (Marketin et al. 2016; Möller et al. 2019;
Minato et al. 2021).
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variance-based sensitivity analysis (Saltelli et al. 2010) of the
calculated r-process abundance pattern. As discussed in detail
below, by treating the physical quantities of interest, namely
T1/2 and P1n, as variable inputs of the nuclear reaction network
calculation, we can assess their influence on the calculated
abundance patterns.

4.1.1. Uncertainty Quantification

Uncertainty quantification reveals how the uncertainties of
the nuclear observables collectively translate into the uncer-
tainty of the calculated abundance pattern. This has been
performed in various previous studies (Martin et al. 2016;
Mumpower et al. 2016; Sprouse et al. 2020), mainly using
theoretical values for a wide range of nuclides and focusing on
the uncertainty of the overall abundance pattern.

In this work, we perform an uncertainty quantification with
the experimental uncertainties of the half-lives and β-delayed
one-neutron-emission probabilities (P1n), specifically focusing
on the REP. This assesses the uncertainty of the abundance
pattern induced by the current experimental uncertainties. If the
size of the induced uncertainty is significantly larger than that
of the measured solar abundance, it generally means that a
more precise measurement is necessary within the set of
nuclides. Because there are other sources of uncertainties from
nuclear physics inputs, as well as astrophysical inputs, this
uncertainty provides a lower limit.

We further compare these uncertainties of the calculated
abundance patterns obtained from this experiment with those
calculated with the previously measured β−-decay half-lives
taken from Wu et al. (2017), supplemented with the theoretical
values from FRDM2012+QRPA (Möller et al. 2019) where
previous experimental values do not exist. In this comparison,
however, the uncertainties of P1n from the current measurement
have been used for both calculations. This is because it is
difficult to assume reasonable uncertainties on theoretical
values, and as we show in Section 4.2, the largest contribution
to the uncertainties comes from the half-lives. Therefore, this
comparison quantifies the impact of the current measurements
on the β−-decay half-lives.

4.1.2. Variance-based Sensitivity Analysis

In the context of the r-process nucleosynthesis, a notable
previous work on sensitivity analysis focusing on nuclear
physics inputs in nucleosynthesis calculations has been
performed by Mumpower et al. (2016). In their work,
sensitivities of the calculated abundances to various nuclear
physics observables, such as β-decay half-lives, β-delayed

neutron-emission probabilities, neutron capture rates, and
masses, were estimated for the entire chart of nuclides.
While this work has provided significant insight into the

dependence of the calculated abundances on the individual
nuclear physics inputs, their sensitivity analysis method faced
several challenges. The sensitivities were estimated by
changing one input at a time, with or without propagating the
variation to other inputs, and summing the absolute differences
of the output from the baseline over all mass numbers. This
one-at-a-time scheme implicitly assumes linearity and additiv-
ity in the response of the calculation to the change in the input
(Saltelli & Annoni 2010). Because nucleosynthesis calculations
often show nonlinear relations between variations of reaction/
decay rates and abundance changes (Bliss et al. 2020), the
sensitivity estimates based on this scheme are potentially
unreliable. Furthermore, with this method, the space of the
input variables, whose dimension is equal to the number of the
variables, is largely unexplored.
Bliss et al. (2020) studied the effect varying the (α, n)

reaction rates employing a Monte Carlo approach in the context
of neutrino-driven ejecta in core-collapse supernovae. With the
Monte Carlo method, it is possible to explore the entire variable
space. In identifying the key reaction rates, Spearman’s
correlation coefficient was employed as sensitivity metric,
which assumes a monotonic relation between the output
(elemental abundance) and the variation of an input (e.g., an
(α, n) reaction rate). While the assumption of a monotonic
relation is an improvement from the linear assumption in
Rauscher et al. (2016) and Nishimura et al. (2017), who
employed Pearson’s correlation coefficient, there is no
guarantee that the relation is always monotonic.
In our sensitivity analysis, we employ the variance-based

sensitivity analysis method. This method is also based on a
Monte Carlo approach, and it determines the individual
contribution of input variables to the uncertainty (variance) of
the output of the model (Saltelli et al. 2010). The same method
has recently been applied in a study of ab initio nuclear theory
(Ekström & Hagen 2019).
The aim of this work is to apply the sensitivity analysis

method to the calculation of r-process abundances in the REP
region, with the nuclear reaction network calculation being our
model, T1/2 and P1n values from the current experiment being
the inputs to be varied, and the abundances as a function of
mass number in the REP region being the output of the model.
In this study, we compute the first-order sensitivity indices S(1)

(see Appendix A), which account for the contributions of the
uncertainty of individual variables to the uncertainty (variance)
of the output. Because the sensitivity metric is based on the

Table 1
Half-lives and β-delayed Neutron Emission Probabilities (P1n) Measured in the Present Work

Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n

[ms] [%] [ms] [%] [ms] [%] [ms] [%]
159Pm -

+1648 42
43 �0.6 166Pm -

+228 112
131 �52 167Sm -

+334 78
83 �16 170Eu -

+197 71
74 �24

160Pm*
-
+874 12

16 �0.1 161Sm -
+4349 441

425 �2.7 168Sm -
+353 164

210 �21 167Gd -
+2269 988

1817 �12
161Pm -

+724 12
20

-
+1.09 0.11

0.11 162Sm -
+3369 303

200 �1.0 165Eu* -
+2163 120

139 �0.4 168Gd -
+2947 387

467 �0.8
162Pm -

+467 18
38

-
+1.79 0.19

0.19 163Sm -
+1744 204

180 �0.1 166Eu -
+1277 145

100
-
+0.63 0.17

0.17 169Gd* -
+926 102

95 �0.7
163Pm*

-
+362 30

42
-
+5.00 0.74

0.73 164Sm -
+1422 59

54 �0.7 167Eu -
+852 54

76
-
+1.95 0.38

0.38 170Gd -
+675 75

94 �3
164Pm -

+280 33
38

-
+6.18 1.79

1.80 165Sm -
+592 55

51
-
+1.36 0.40

0.40 168Eu -
+440 47

48
-
+3.95 0.83

0.83 171Gd -
+392 136

145 �10
165Pm -

+297 101
111

-
+13.26 6.15

6.23 166Sm -
+396 63

56
-
+4.38 1.38

1.25 169Eu -
+389 88

92
-
+14.62 5.09

5.82 172Gd -
+163 99

113 �50

Note. The half-lives tagged with an asterisk (*) may include both ground-state and isomeric-state decays (for details, see text).
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variance, i.e., the size of variation in the output in response to
the variation of inputs, it does not rely on any assumption of the
type of relation, e.g., monotonic or linear. This allows for a
straightforward interpretation of the sensitivity metric and
identification of key nuclides and their nuclear properties that
are responsible for the uncertainty of the calculated abundance
pattern.

Furthermore, this framework allows taking the dependence
of the output on multiple input variables (second- or higher-
order sensitivity indices) into account, if they exist, which has
not been addressed in the previously applied sensitivity
analysis methods.

4.1.3. Generation of Monte Carlo Samples

The values of the first-order sensitivity indices S(1) are
estimated from the samples generated from Sobol quasi-
random sequences. Sobol sequences are deterministic and
designed to fill variable spaces more evenly and efficiently than
ordinary pseudo-random sequences, which allow a faster
convergence of Monte Carlo estimators (Equation (A7)).

In both of the tasks of uncertainty quantification and
sensitivity analysis, we use normal (Gaussian) distributions as
distributions of most of the experimental values, where the
mean values are equal to the nominal experimental values and
the standard deviations are equal to the experimental
uncertainties. In case of asymmetric uncertainties, the higher
values have been used. Picking larger uncertainties to
symmetrize the Gaussian distributions greatly simplifies the
analysis while providing a conservative estimate of the
uncertainty of the abundance pattern. When only upper limits
are provided for P1n values, it is assumed that they follow
uniform distributions between 0% and the upper limit values
(accordingly, if we had lower limits, the distribution would
extend from the lower limit value up to 100%).

For the uncertainties of the FRDM2012+QRPA half-lives
used in the comparison described in Section 4.1, the size is
assumed to be a factor of 10 around the predicted decay rates,
following the uncertainty analysis in Mumpower et al. (2016).
Any nonphysical samples, such as negative half-lives or P1n

values, are discarded.
One thousand samples of each of T1/2 and P1n value have

been generated and used as inputs for nuclear reaction network
calculations to obtain the nucleosynthesis yields of the r-
process. The nuclear reaction network code PRISM (Mum-
power et al. 2018) has been used for the calculations. We
employ two astrophysical trajectories (temperature and density
evolution): a dynamical ejecta from a neutron-star merger, and
a neutrino-driven wind. Both scenarios have been extensively
studied as some of the most promising sites of the r-process.

The neutron-star merger trajectory is from Vassh et al.
(2019) based on the simulations by Rosswog et al. (2013) and
Piran et al. (2013), which takes the self-heating based on the
FRDM2012 mass model into account (Möller et al. 2016). The
hot neutrino-driven wind trajectory (hereafter referred to as hot
wind) corresponds to a hot r-process condition with low
entropy of S = 30 kB, an initial electron fraction of Ye = 0.20,
and an expansion timescale of 70 ms based on Meyer (2002),
which is discussed in more detail in Mumpower et al. (2016).
In the calculations, it is assumed that the emitted neutrons
following the β-decays instantly thermalize, and reach energies
equal to the average energy of the neutrons in the environment,

which is determined by the temperature of the astrophysi-
cal site.
Rates of β−-decays, β−-delayed neutron-emission probabil-

ities, neutron capture rates, fission rates and yields, etc.,
included in the network are identical to those in Sprouse et al.
(2021). Whenever available, the theoretical rates and reaction
Q-values have been replaced by the experimental values
reported in AME2016 and Nubase2016 (Wang et al. 2017;
Audi et al. 2017). For the nuclides measured in this study
(Table 1), the current experimental values replace any of the
existing β−-decay rates (T1/2) and β-delayed one-neutron-
emission probabilities (P1n).

4.2. Results

Figure 6 shows the ±2σ intervals of the abundances
calculated with the samples drawn from the distributions
discussed above, allowing variation of the half-lives and P1n

values of 159–166Pm, 161–168Sm, 165–170Eu, and 167–172Gd for
both of the employed astrophysical trajectories. Derived
isotopic solar r-process abundances (Goriely 1999; Sneden
et al. 2008) are also shown for reference. The averages of the
abundance patterns have been scaled at A= 157 to match the
calculation of the neutron-star merger scenario. It is common
practice to scale either calculated or solar abundance patterns to
make a comparison, as they are both relative abundances. In
this work, we choose to scale all the abundances to match
A= 157, which is the base of the REP on the low-mass side.
This allows for a clear comparison of the height of the peaks of
the calculated and the solar abundance patterns. While the
calculations do not provide a great match to the solar
abundances, the idea of this work is to learn about the
dependence of calculated abundances in the REP region on the
varied nuclear physics inputs, using some of the representative
astrophysical conditions. In order to identify the cause of the
significant discrepancies between the calculated abundance
patterns and the solar abundance pattern, it is necessary to
quantify the abundance uncertainties due to the assumptions
and approximations in the astrophysical trajectories, in addition
to the quantification of nuclear physics uncertainties.

Figure 6. Calculated relative r-process abundance pattern for the neutron-star
merger scenario (blue line) and the hot wind scenario (orange). The band
represents the ±2σ interval propagated from the uncertainties of the current
experimental results. The green boxes and red triangles indicate the derived
relative solar r-process abundance pattern from Goriely (1999) and Sneden
et al. (2008). The abundance patterns are scaled to match the mean value of the
calculated abundance in the neutron-star merger scenario at A = 157.
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Comparisons between the ±2σ uncertainty bands calculated
from the current experimental uncertainties (solid bands) and
the uncertainty bands calculated with the previous experimental
half-lives taken from Wu et al. (2017), supplemented with the
theoretical half-lives from FRDM2012+QRPA (Möller et al.
2019; hatched band), are shown in Figure 7. As stated above,
the uncertainty of the theoretical values is assumed to be a
factor of 10, following the analysis by Mumpower et al. (2016).
Both calculations use the current experimental uncertainties of
the P1n values for the β-delayed neutron-emission probabilities.
Therefore, this comparison quantifies the impact of the current
experimental half-lives.

In the neutron-star merger scenario (Figure 7, top panel), the
current experiment reduces the uncertainties for the mass
numbers A= 162–176. The reduction is especially significant
for A= 162–166 and 169–172. For the hot wind scenario
(Figure 7, bottom panel), while the reduction in uncertainty is
not as significant, the effect of the new data can be seen at
A= 165–167 and A= 169–170.

In both trajectories, Figures 6 and 7 show that the current
experimental data still have significant effect on the

uncertainties of the right (heavier) wing of the REP. Therefore,
in our analysis below, we mainly focus on the abundances of
the mass numbers A= 168–173 and identify the sources of the
uncertainty within the current set of experimental values.
Because this analysis accounts only for the uncertainty of the
current measurements, it should be noted that the size of
uncertainty on the abundance pattern represents only a lower
limit.
Figure 8 shows a snapshot of the r-process path (at

t = 0.608 s) of the neutron-star merger scenario. The location
of the isotopes of interest in the chart of nuclides relative to the
path suggests that they are completely synthesized during
freeze-out when the material decays back to stability. There-
fore, analyzing how the decay properties such as half-lives and
P1n affect the abundances around the REP through the
variance-based sensitivity analysis may provide further insights
into the freeze-out of the r-process. Because most of the
analyses below will be common for both trajectories, i.e.,
neutron-star merger and hot wind, we primarily focus on the
neutron-star merger scenario.

4.2.1. First-order Sensitivity Indices

First-order sensitivity indices S(1) estimate the amount of the
contribution of each variable (T1/2 and P1n values, in this
study) to the variance of the abundances. Tables 2 and 3 show
the nuclides with the highest S(1) values, which means the
largest contribution to the abundance variances, for
A= 168–173, for the neutron-star merger and hot wind
trajectory, respectively. A more detailed introduction to the
variance-based sensitivity analysis method is provided in
Appendix A, and complete tables of the sensitivity indices
can be found in Appendix B.
From Tables 2 and 3, it can be seen that samarium (Z = 62)

and gadolinium isotopes (Z = 64) account for most of the
abundance variances for these mass numbers for both
astrophysical scenarios. For example, in the case of the
neutron-star merger scenario, based on the values of the
sensitivity indices, it can be concluded that the half-lives of
168Sm and 168Gd account for 60.9 (±6.6)% and 24.3 (±4.6)%
of the variance (propagated uncertainty) of the abundances at
A= 168, respectively. The effect of the half-life of 168Sm also

Figure 7. Comparisons of ±2σ uncertainty bands of the calculated abundance
patterns between the current experimental uncertainties of T1/2 and P1n values
(solid bands) and the uncertainties of T1/2 from Wu et al. (2017), supplemented
with the theoretical half-lives from FRDM2012+QRPA (Möller et al. 2019),
where previous experimental values do not exist, with the uncertainties of P1n

values also from the current experiment (hatched bands). The top panel
corresponds to the neutron-star merger scenario, and the bottom panel
corresponds to the hot wind scenario. In both cases, all the abundance patterns
are scaled to match the mean of the abundance in the neutron-star merger
scenario at A = 157. See text for details.

Figure 8. A snapshot of the r-process path in the neutron-star merger scenario
at t = 0.608 s. The purple squares show the isotopes whose half-lives and β-
delayed neutron-emission probabilities have been measured in this work. The
solid gray boxes indicate the isotopes with negative one-neutron separation
energies (S1n < 0) in the FRDM2012 mass model (Möller et al. 2016). The
inset shows the temperature and density profile of the trajectory.
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propagates to the uncertainties of abundances for A= 172 and
173, which is discussed in more detail below. On the other
hand, the influence of the P1n values is relatively small in this
astrophysical scenario.

In the case of the hot wind scenario, a larger contribution
from the uncertainty of the P1n values has been observed on
average (Table 3). This is likely because the environment is
less neutron-rich than in the neutron-star merger scenario

Table 2
Table of Nuclear Input Variables that Have a Significant Contribution to the Uncertainties of the Calculated Abundances for A = 168–173 in the Neutron-star Merger

Scenario

Max. relative
100 ( )´ S 1 (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 1.9 (±1.1) 3.2 (±1.5) 4.9 (±1.9) 2.7 (±1.5) 0.8 (±0.9) —
166Pm T1/2 57.5 — — 0.5 (±0.6) 0.7 (±0.7) — —
166Sm T1/2 15.9 — 1.7 (±1.2) 4.8 (±1.9) 3.8 (±1.7) 1.5 (±1.0) 0.8 (±0.7)
167Sm T1/2 24.9 0.6 (±0.6) — — 1.1 (±0.9) 0.9 (±0.8) 0.6 (±0.7)
168Sm T1/2 59.5 60.9 (±6.6) 55.1 (±7.1) 14.6 (±4.4) 32.6 (±5.0) 43.5 (±5.5) 41.6 (±5.6)
168Eu T1/2 10.9 0.5 (±0.7) — — — — —
169Eu T1/2 23.7 — 3.6 (±1.4) — — 0.9 (±0.8) 0.7 (±0.7)
170Eu T1/2 37.6 — — 0.6 (±0.9) — — —
167Gd T1/2 80.1 6.1 (±2.5) 26.6 (±4.3) 34.2 (±6.2) 14.6 (±3.9) 3.5 (±1.8) 1.2 (±1.1)
168Gd T1/2 15.8 24.3 (±4.6) 8.3 (±2.7) 8.1 (±2.8) 2.2 (±1.5) — —
169Gd T1/2 11.0 — 0.8 (±0.8) — — — —
170Gd T1/2 13.9 — — 25.2 (±4.7) 1.4 (±1.2) 2.6 (±1.4) 3.5 (±1.7)
171Gd T1/2 37.0 — — — 20.5 (±4.1) 4.6 (±2.0) 1.0 (±1.1)
172Gd T1/2 69.3 — — — 3.6 (±2.1) 35.7 (±5.1) 49.3 (±5.9)
165Pm P1n 47.0 — 0.6 (±0.6) 0.7 (±0.5) — — —
168Sm P1n (100) — — — 0.8 (±0.8) 0.6 (±0.6) —
169Eu P1n 39.8 5.4 (±2.1) — 3.7 (±1.6) 3.6 (±1.7) 1.3 (±1.0) 0.6 (±0.7)
170Eu P1n (100) — 0.5 (±0.6) — — — —
172Gd P1n (100) — — — 5.5 (±2.0) 3.2 (±1.5) 0.6 (±0.7)

( )( )S T1
1 2 total: 94.9 (±8.6) 100.1 (±9.2) 93.9 (±9.9) 84.0 (±8.5) 95.1 (±8.3) 99.7 (±8.6)

( )( )S P n
1

1 total: 5.9 (±2.3) 1.1 (±1.1) 5.6 (±2.0) 11.0 (±2.9) 5.7 (±2.0) 2.0 (±1.1)
S(1) total: 100.9 (±8.9) 101.3 (±9.2) 99.5 (±10.1) 95.0 (±9.0) 100.7 (±8.6) 101.6 (±8.6)

Note. Columns 4–9 show the first-order sensitivity indices (S(1)), which represent the contribution of individual variables to the abundance uncertainty, with 95%
confidence intervals. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the
nominal value, in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in
Dimitriou et al. (2021). Long dashes (—) indicate that the nominal value of ( )´ S100 1 is lower than 0.5 [%]. Values higher than 10 [%] are highlighted in boldface.
Complete tables are given in Appendix B.

Table 3
Table of Nuclear Physics Inputs that Have a Significant Contribution to the Uncertainties of Calculated Abundances for A = 168–173 in the Hot Wind Scenario

Max. Relative 100 ( )´ S 1 (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 — 0.5 (±0.6) — — — —
168Sm T1/2 59.5 96.1 (±14.1) 71.4 (±7.0) 95.2 (±8.2) 56.8 (±7.1) 44.6 (±7.2) 80.7 (±13.3)
169Eu T1/2 23.7 — 2.6 (±1.4) 0.5 (±0.6) — — —
167Gd T1/2 80.1 — 0.6 (±0.6) — — — —
168Gd T1/2 15.8 — 2.8 (±1.5) — — — —
170Gd T1/2 13.9 — — 1.1 (±0.9) 0.7 (±0.8) — —
171Gd T1/2 37.0 — — — 6.9 (±2.6) 0.5 (±0.7) 1.8 (±1.2)
172Gd T1/2 69.3 — — — 9.9 (±3.2) 53.3 (±7.6) 11.1 (±3.3)
168Sm P1n (100) 2.0 (±1.5) 3.5 (±1.7) 0.5 (±0.6) — — —
169Eu P1n 39.8 1.0 (±0.9) 10.8 (±2.9) 0.5 (±0.7) — — —
170Eu P1n (100) — 6.7 (±2.3) 2.1 (±1.2) — — —
172Gd P1n (100) — — — 25.2 (±4.6) 2.6 (±1.7) 5.5 (±2.1)

( )( )S T1
1 2 total: 97.0 (±14.1) 78.9 (±7.4) 97.4 (±8.3) 74.6 (±8.2) 98.6 (±10.5) 93.8 (±13.7)

( )( )S P n
1

1 total: 3.0 (±1.8) 21.5 (±4.1) 3.7 (±1.6) 25.9 (±4.7) 2.8 (±1.7) 5.6 (±2.1)
S(1) total: 100.0 (±14.3) 100.5 (±8.5) 101.1 (±8.4) 100.5 (±9.5) 101.3 (±10.7) 99.4 (±13.9)

Note. Columns 4–9 show the first-order sensitivity indices (S(1)), which represent the contribution of individual variables to the abundance uncertainty, with 95%
confidence intervals. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the
nominal value, in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in
Dimitriou et al. (2021). Long dashes (—) indicate that the nominal value of ( )´ S100 1 is lower than 0.5 [%]. Values higher than 10 [%] are highlighted in boldface.
Complete tables are given in Appendix B.
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(Mumpower et al. 2016). Therefore, β-delayed neutron
emissions become a more important source of neutrons,
especially at the late time of the r-process.

As a general trend, the uncertainties of the half-lives have the
largest effect on the abundances for the corresponding mass
number of the isotope, and a smaller effect for higher mass
numbers. As one might expect, one-neutron-emission prob-
abilities (P1n) can influence the abundance for the mass number
A− 1, where A is the mass number of the parent nucleus. For
example, the uncertainty of P1n(

165Pm) accounts for 59.7% of
the variance for A= 164 in the neutron-star merger scenario.

4.2.2. Effect of the Size of the Uncertainty

Maximum relative uncertainties of each input variable,
which we define to be the size of the ratio of the larger one of
upper or lower uncertainty to the nominal value, are also shown
in the third column of Tables 2 and 3. The half-lives of 168Sm,
167Gd, and 172Gd, which are some of the most influential half-
lives in the neutron-star merger scenario within the current data
set, all have relatively large uncertainties of 60%–80%.
However, a large relative uncertainty does not necessarily
mean a large influence on the abundance uncertainty, as can be
seen from Tables 2 and 3. For example, the half-life of 172Gd,
whose relative uncertainty is larger than that of 168Sm, has a
similar or smaller contribution to the abundance at A= 172 and
173 than 168Sm, which may also suggest that the mechanisms
of the abundance pattern formation are different between inside
the REP (A= 155–170) and the heavy-mass wing of the
peak (A> 170).

In order to investigate the effect of the size of input
uncertainty on the sensitivity indices, we conduct a test under
the neutron-star merger condition. In this test, the size of the
uncertainty of the half-life of 168Sm, which has been identified
as one of the most influential inputs in both of the astrophysical
trajectories, is artificially decreased to the relative uncertainty
of 20% from the current value of 59.5%, while the mean value
is kept the same. Note that this does not consider the possibility

that the true mean value of the half-life can lie outside the
currently considered 20% relative uncertainty.
In the neutron-star merger scenario, the half-life of 168Sm has

first-order sensitivity indices of S(1) = 60.9%, 43.5%, and
41.6% for A= 168, 172, and 173, respectively (Table 2) when
the the relative uncertainty is 59.5%. This means that if the
half-life could be fixed without any uncertainty, we would be
able to reduce the uncertainty of the calculated abundances by
60.9%, 43.5%, and 41.6% for A= 168, 172, and 173,
respectively. Because experimentally fixing the half-life or
any other observables without uncertainty is impossible, it is
worthwhile to investigate the effect of reducing the uncertainty.
Figure 9 shows a comparison between the calculated

uncertainty (variance) of the abundance pattern using the
original experimental uncertainty (light blue) and when the
relative uncertainty of the half-life of 168Sm is reduced to 20%
from 59.5% (dark blue) in the neutron-star merger scenario. As
predicted from the sensitivity indices (see Tables 2 and B2), the
uncertainties have been significantly reduced for A= 168 and
169, and to a smaller degree for the higher mass numbers.
Table 4 shows the sensitivity indices with the reduced 168Sm

half-life uncertainty. While the value of ( )´ S100 1 of the half-
life of 168Sm for A= 168 decreased to 17.6% from 60.9%
(Table 2), it is still a significant contribution to the output
variances. It is also worth pointing out that the half-life of 168Gd
now has a larger contribution to the variance at A= 168,
although its relative uncertainty is only 15.8%. For the mass
numbers A= 172 and 173, now the half-life of 172Gd has the
dominant contributions. At the same time, it can be seen from
the table that the sensitivity has been more fragmented across
the input variables compared to the case shown in Table 2,
elevating the relative sensitivity of the half-lives of the
gadolinium isotopes.
Therefore, the half-lives of gadolinium isotopes may be

considered significant sources of uncertainty of the calculated
abundances in addition to the 168Sm half-life within the set of
isotopes of interest in the current study.

4.2.3. Impact of 168Sm Half-life During the Freeze-out

By inspecting the samples generated for the variance-based
sensitivity analysis, one may learn how the abundances depend
on the nuclear physics inputs. We again take the half-life of
168Sm as an example to demonstrate this, focusing on the
neutron-star merger scenario. Figure 10 shows the correlations
of abundances for several mass numbers with the half-life of
168Sm. Comparing panels (a) and (b) of the figure, it can be
seen that the abundance has a clear correlation with the half-life
when the sensitivity index is high.
The mechanism of this correlation becomes clear by

analyzing the abundance flows due to β-decay and neutron
capture. Figure 11 shows the relative isotopic abundances as
functions of time (upper panels), the abundance flows (middle
panels), and their total contributions, i.e., integrals of the
abundance flows over time (lower panels) due to neutron
capture and β-decay (labeled (n, γ) and β− in the figure,
respectively) for 168Sm, 168Eu, and 168Gd. They are separated
into two cases: the sampled half-life of 168Sm is longer than
0.55 [s] (Case 1) or shorter than 0.20 [s] (Case 2) for the
neutron-star merger scenario. The dashed red lines in the upper
and middle panels represent the relative abundance of neutrons
as a function of time.

Figure 9. Calculated relative r-process abundance pattern for the neutron-star
merger scenario (blue line). The green boxes and red triangles are the derived
relative solar r-process abundance pattern from Goriely (1999) and Sneden
et al. (2008). The band in light blue represents the ±2σ interval propagated
from the uncertainties of the original experimental results. The band in dark
blue represents the ±2σ interval when the relative uncertainty of the half-life of
168Sm is artificially reduced to 20%, with the same mean value. All the
abundance patterns are scaled to match the mean of the calculated abundances
at A = 157 for the neutron-star merger scenario.
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It shows that these isotopes are synthesized after the neutron
abundance drops significantly (freeze-out). The total contribu-
tions of the flows of (n, γ) and β− are also shown in Figure 12
for the isotopic chains of Sm, Eu, and Gd up to the mass
number A= 172. In the figure, the width of the arrows
correspond to the total amount of (n, γ) and β−-decay flows.
Contributions from the reverse reaction of neutron capture (i.e.,
photodissociation) are negligible for all cases. Flows due to β-
delayed neutron emission are also not shown because they only
have contributions up to a few percent on average in this
neutron-star merger scenario (Table 2).

Panel (d) of Figure 11 shows that the half-life of 168Sm has a
significant effect on the abundance flow from the isotope due to
β-decay, while leaving the flow due to neutron capture
relatively unaffected. The integrated abundance flow from
168Sm shown in panel (g) indicates that the flow due to β-decay
is increased when the half-life of 168Sm is small. The increased
amount of 168Eu is quickly consumed by neutron captures, as
shown in pink in panels (e) and (h). This in turn means that the
longer half-life of 168Sm provides a smaller amount of 168Eu
that can be converted into higher masses through neutron
capture, therefore resulting in the smaller abundances for
higher mass numbers, as shown in panels (c) and (d) of
Figure 10. This effect can also be seen in panels (a) and (b) of
Figure 12 and explains why the abundances for A= 172 or 173
decrease as the half-life of 168Sm increases.

This means that the half-life of 168Sm has a significant
influence on the neutron capture flow in the Eu isotopic chain
because 168Sm is synthesized almost at the same time as the
neutron abundance starts to drop (panel (a), Figure 11), meaning
that some neutrons are still available for neutron capture, while
photodissociation is no longer active. In panel (i) of Figure 11
and panel (b) of Figure 12, it can be seen that the flow from 168Gd

due to β-decay (hatched histogram in blue) is larger when the
half-life of 168Sm is longer. This is because the longer half-life of
168Sm extends the flow of β-decay of 168Eu into the late time of
the r-process where neutron capture is no longer significantly
active, thus leaving more material at the same isobaric mass chain
by avoiding being consumed by neutron capture.
Overall, the half-life of 168Sm affects not only the flow of β-

decay of 168Sm, but also the flow of neutron capture in the Eu
isotopic chain up to a mass number A= 172, 173 and higher.
This is also the case in the Gd isotopic chain, but to a lesser

Figure 10. Correlation of abundances for A = 167, 168, 172, and 173 with the
half-life of 168Sm, as well as the first-order sensitivity indices (S(1)), in the
neutron-star merger scenario. The correlation is sharp for a high sensitivity
index (e.g., panel (b)), and the distribution is blurred for a low sensitivity index
(e.g., panel (a)).

Table 4
Table of Nuclear Input Variables that Have a Significant Contribution to the Uncertainties of the Calculated Abundances for A = 168–173 for the Neutron Star Merger

Scenario, with the Relative Uncertainty of the Half-life of 168Sm Reduced to 20.0%

Max. relative 100 ( )´ S 1 (95% C.I.) [%]

Nuclide Variable uncertainty [%] A = 168 169 170 171 172 173

165Pm T1/2 37.4 3.5 (±1.5) 5.9 (±2.0) 5.4 (±2.2) 3.6 (±1.8) 1.3 (±1.1) 0.6 (±0.7)
166Pm T1/2 57.5 — 0.6 (±0.4) 0.5 (±0.6) 0.8 (±0.7) 0.5 (±0.6) —
166Sm T1/2 15.9 0.8 (±0.7) 3.1 (±1.6) 5.2 (±2.0) 4.9 (±2.0) 2.2 (±1.2) 1.1 (±0.9)
167Sm T1/2 24.9 1.4 (±1.0) 0.5 (±0.6) — 1.5 (±1.1) 1.5 (±1.1) 1.0 (±0.9)
168Sm T1/2 20.0* 17.6 (±3.8) 13.0 (±3.3) 1.0 (±0.9) 9.4 (±2.8) 12.1 (±3.1) 9.7 (±2.8)
167Eu T1/2 8.9 — 0.5 (±0.6) — — — —
169Eu T1/2 23.7 — 7.1 (±2.1) — 0.6 (±0.7) 1.4 (±1.1) 1.0 (±0.9)
170Eu T1/2 37.6 — — 0.8 (±0.9) — — —
167Gd T1/2 80.1 12.5 (±4.3) 50.8 (±6.4) 39.7 (±6.8) 19.8 (±4.9) 5.4 (±2.4) 1.8 (±1.4)
168Gd T1/2 15.8 50.6 (±6.9) 16.0 (±3.5) 9.5 (±2.9) 3.0 (±1.7) 0.6 (±0.8) —
169Gd T1/2 11.0 — 1.6 (±1.1) — — — —
170Gd T1/2 13.9 — — 29.2 (±5.2) 1.9 (±1.4) 4.1 (±1.8) 5.5 (±2.1)
171Gd T1/2 37.0 — — — 28.0 (±4.8) 7.0 (±2.7) 1.5 (±1.5)
172Gd T1/2 69.3 — — — 4.8 (±2.5) 54.4 (±6.1) 73.8 (±6.9)
165Pm P1n 47.0 — 1.2 (±0.8) 0.9 (±0.5) 0.6 (±0.4) — —
168Sm P1n (100) — — 0.6 (±0.8) 1.4 (±1.0) 1.1 (±0.7) 0.7 (±0.6)
169Eu P1n 39.8 11.3 (±3.0) — 4.5 (±1.8) 5.0 (±2.1) 2.1 (±1.3) 1.0 (±0.8)
172Gd P1n (100) — — — 7.4 (±2.4) 4.8 (±1.8) 0.9 (±0.8)

Note. Columns 4–8 show the first-order sensitivity indices (S(1)), which represent the contribution of individual variables to the abundance uncertainty, with 95%
confidence intervals. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the
nominal value, in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in
Dimitriou et al. (2021). 20.0* for the half-life of 168Sm denotes that the relative uncertainty is artificially reduced to 20.0%. Long dashes (—) indicate that the nominal
value of ( )´ S100 1 is lower than 0.5 [%].
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extent. The balance between the β-decays and the neutron
captures determines the final abundance pattern. Therefore, in
order to properly account for the uncertainties of the abundance

pattern from the nuclear physics inputs, uncertainties of neutron
capture rates have to be included as well. This will be
addressed in future work.

Figure 11. The top panels (a)–(c) show the abundance evolution of the isotopes 168Sm, 168Eu, and 168Gd as functions of time in the neutron-star merger scenario. The
vertically hatched yellow bands correspond to the case where the half-life of 168Sm exceeds 0.55 [s], and the solid gray bands correspond to a half-life shorter than
0.20 [s]. The middle panels (d)–(f) show the abundance flows of β−-decay (labeled β−, hatched with “//”) and neutron capture (labeled (n, γ), solid bands) as
functions of time, for 168Sm, 168Eu, and 168Gd, respectively, extracted from the generated samples. The dash–dotted red line is the neutron abundance as a function of
time, which shows that these isotopes are synthesized after the neutron abundance significantly drops (freeze-out). The bottom panels (g)–(i) show the integrals of the
abundance flows, i.e., the areas below the solid and dotted lines in the top panels. In all the panels, the solid outlines represent Case 1: T1/2(

168Sm) > 0.55 [s], and the
dashed outlines represent Case 2: T1/2(

168Sm) < 0.20 [s].

Figure 12. The arrows show the total abundance flow (same quantity as in panels (g)–(i) in Figure 11), averaged over the generated samples in the neutron-star merger
scenario. Red corresponds to the case where the half-life of 168Sm is shorter than 0.20 [s], and blue shows a half-live longer than 0.55 [s]. Panels (b) and (c) focus on
the flows from 172Gd and 168Gd, respectively. The propagated influence of the half-life of 168Sm is visible, which results in affecting the final abundances.
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5. Summary and Conclusions

The β-decay properties of 28 neutron-rich Pm, Sm, Eu, and
Gd isotopes were measured at RIKEN Nishina Center. Using
the BRIKEN neutron counter array, β-delayed neutron-
emission probabilities were derived for the first time in this
mass region. The existing half-life database has been
significantly extended toward more neutron-rich species.

Nuclear reaction network calculations for the r-process
employing a neutron-star merger and a hot wind scenario have
been carried out. Uncertainty quantification through the
network calculations and comparison with the previous
measurement supplemented with the assumed theoretical
uncertainties showed that the currently measured half-lives
reduce the propagated uncertainty (variance) of the calculated
abundances of the heavier wing of the REP.

A new variance-based sensitivity analysis method has been
introduced to identify nuclear physics inputs of importance
within the current experimental uncertainties. The analysis has
been performed using the characteristic abundance pattern of
the REP region.

The results of the analysis indicate that only a handful of
variables account for nearly all the uncertainty (variance) of the
abundance pattern. The results also suggest that the contribu-
tions of the uncertainty of the currently measured β-delayed
one-neutron-emission probabilities (P1n) are significantly
smaller than the half-lives in the case of neutron-star mergers.
The uncertainties of the P1n values have larger contributions to
the abundance pattern in the hot wind scenario, most likely
because the environment is poorer in neutrons than in the
neutron-star merger scenario.

The half-life of 168Sm, which has been measured for the first
time in the current experiment, shows a significant influence on
the high-mass tail of the REP (A= 168–173) in both
astrophysical scenarios. The calculated sensitivity indices and
the numerical experiment on artificially reducing the uncer-
tainty of the half-life of 168Sm also indicate that the half-lives
of 167–172Gd are significant sources of the uncertainty on the
calculated abundance patterns. The analysis of the abundance
flows due to neutron captures and β-decays in the neutron-star
merger scenario revealed that when the timescales of the β-
decays of 168Sm and neutron captures are comparable, the
material can be transferred to higher masses such as A= 172
and 173 through chains of neutron capture mainly within the
Eu isotopic chain.

The high sensitivity of the abundances to the half-life of
168Sm is most likely due to 168Sm being synthesized at the
beginning of the r-process freeze-out when some neutrons are
still available for neutron capture. This sensitivity analysis
method thus provides a detailed view of how the flows of
material in the r-process are affected by the nuclear physics
inputs, in addition to identifying influential input variables.

In general, the observation that only a handful of nuclides
contribute to the uncertainty of the abundance pattern is
consistent with the fact that the r-process nuclear reaction
network is a highly overparameterized model. This means that
the number of input variables (rates, initial condition,
astrophysical trajectory, etc.) is larger than the number of
output variables (abundances).

From a large number of input variables, the variance-based
sensitivity analysis method can effectively identify influential
variables, as demonstrated above, by focusing on localized
features of the abundance pattern and a subset of input

variables. This method relies on an assumption that the
variables of interest have reasonable uncertainties. If exper-
imental uncertainties are not available, which is currently the
case for many of the nuclear observables of neutron-rich nuclei,
theoretical uncertainties would be required to identify influen-
tial input variables.
The astrophysical analysis in this work does not concern

theoretical β-decay properties of nuclei that are outside of the
current experiment. However, as shown in Figure 4, some
systematic discrepancies between the observed β-decay half-
lives and the theoretical predictions are present. In future work,
it may be useful to calibrate the theoretical predictions based on
the available experimental data and perform uncertainty
quantification and a sensitivity analysis in order to investigate
the implication on the trend of β-decay properties by the
experimental data and its effect on calculated abundance
patterns. Furthermore, it will be necessary to include more
isotopes as well as more nuclear observables, such as masses
and neutron capture rates, to draw more general conclusions.
The possible dependence between the observables, e.g., masses
and β−-decay half-lives, should also be accounted for within
the sensitivity analysis method.
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Appendix A
Introduction to the Variance-based Sensitivity Analysis

Method

The variance-based sensitivity method applied in this work is
based on the work presented in Saltelli et al. (2010), and the
notation in this section follows that of the paper. We refer the
reader to Saltelli et al. (2010) and Mara et al. (2015) for more
detailed discussions of the method. As explained in the main
text of the current work, this method quantifies the contribution
of the uncertainty (variance) of each input variable to the
uncertainty of the output. In our work, the input variables
correspond to the experimental β-decay half-lives (T1/2) and
the one-neutron-emission probabilities (P1n), and the output
corresponds to the nuclear abundances as a function of mass
numbers. A more detailed introduction to the variance-based
sensitivity analysis method is provided below.

Suppose that a numerical model can be expressed as
Y= f (X1, X2,K,Xk), where Y is the output (e.g., nuclear
abundance for a given mass number), Xi (i= 1, 2,K,k) are the
input variables (e.g., T1/2 and P1n values), and f ( ·) is the
simulation (e.g., nucleosynthesis postprocessing code). Assum-
ing for now that X1, X2,K,Xk are independently and uniformly
distributed in [0, 1], the following decomposition of the overall
output variance V(Y) is proven unique by Sobol (1993):

( ) ( )( ) ( ) ( )å åå= + + +
>

¼V Y V V V , A1
i

i
i j i

ij k
k1 2

12

where Vi is the output variance due to the variance of input
variable Xi, and the definition is similar for Vij and other higher-
order terms. Dividing both sides by V(Y),

( )( ) ( ) ( )å åå= + + +
>
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i
i j i
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where ( )( ) ( )=S V V Yi i
1 1 is called a first-order sensitivity index

for Xi, ( )( ) ( )=S V V Yij ij
2 2 is a second-order sensitivity index,

and so on. These partial variances ( )Vi
1 , ( )Vij

2 and so on can be
written as (see Sobol 1993; Saltelli et al. 2010 for more details)
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and so on. In Equation (A3), ( ∣ )~E Y XX ii denotes the expectation
value (average) of Y when the value of Xi is fixed, and ~EX i

means that the average is taken over all the possible values of
all the variables except for Xi. The outer VXi denotes that
variance of the expected value is computed over all the possible
values of Xi. More intuitively, this is equivalent to calculating
the average of the samples shown in Figure 10 by slicing the
samples at a given value of the half-life and then estimating
how much the average varies as the samples are sliced at all the
possible values of the half-life. Therefore, the sensitivity
indices can be written as
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V Y
2 ,closed ,XXiXj ij i j

.
While we have assumed so far that the input variables are

uniformly distributed in [0, 1], this method can be used with
general distributions such as a normal distribution or uniform
distributions that are not in [0, 1], because random numbers
uniformly distributed in [0, 1] can be transformed to desired
distributions through inverse transform sampling, as long as
they are independently distributed and their cumulative
distribution functions are known. The sensitivity indices can
then be defined in a similar manner for general distributions
(Mara et al. 2015).

A.1. Monte Carlo Estimate of Sensitivity Indices

In practice, the sensitivity indices (e.g., Equations (A5) and
(A6)) cannot be computed analytically. Therefore, we compute
their Monte Carlo estimates instead. In order to illustrate the
Monte Carlo method, we use the first-order sensitivity index
(Equation (A5)) as an example.
Suppose that we have k variables of interest and wish to use

N samples to compute their Monte Carlo sensitivity estimates.
The first step is to generate samples that are uniformly
distributed in [0, 1]. While random numbers can be used for
this purpose, we employ a Sobol quasi-random sequence
implemented in a Python library called SALib (Herman &
Usher 2017). Sobol quasi-random sequences are designed to
generate multidimensional uniform samples in [0, 1] to
efficiently explore the entire variable space by filling the gap
between previously sampled points (Saltelli et al. 2010). Using
the quasi-random sequence, we generate N× 2k samples and
split them into two matrices of size N× k.
The next step is to transform the uniformly distributed

samples for each variable in the two matrices into desired
distributions. In this study, the half-lives are assumed to follow
truncated normal (Gaussian) distributions with their means and
standard deviations defined by the experimental values and
uncertainties. The beta-delayed one-neutron-emission probabil-
ities (P1n values) are either truncated normal distributions or
uniform distributions in [0, (upper limit of P1n)]. The samples
uniformly distributed in [0, 1] can be transformed into these
distributions through inverse transform sampling. For conve-
nience, we call the first of the two transformed N× k matrices
A and the second matrix B. Using these matrices, the first-order
sensitivity index is estimated by (based on Equation (16) of
Saltelli et al. 2010 and Equation (30) of Mara et al. 2015)

ˆ ( ) ( ( ) ( ) )
ˆ ( )

( )( )
[ ]

=
å -= A B B

S
f f f

V Y
, A7

A
i

N j
N

j
i

j j1
1

1

where ˆ ( )
Si

1
denotes a Monte Carlo estimate of ( )Si

1 , and f (A)j as
well as f (B)j are the output of simulation run with the j-th row
( j= 1, 2,K,N) of the matrices A and B, respectively. [ ]BA

i is a
N× k matrix whose i-th column (i= 1, 2,K,k) comes from the
matrix A, but all the other columns come from the matrix B.
Consequently, ( )[ ]Bf A

i
j is the output of the simulation run with

the j-th row of [ ]BA
i . ˆ ( )V Y is the total variance of the output of

the simulation, computed with all the generated samples. Errors
of the computed sensitivity indices can be estimated using
bootstrapping (Archer et al. 1997).
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Appendix B
Complete Tables of First-order Sensitivity Indices

Tables B1 and B2 show the complete first-order sensitivity
indices for calculated abundances with mass numbers
A= 161–166 and A= 167–173, respectively for the neutron star
merger scenario, and Tables B3 and B4 for the hot wind scenario.

Table B1
Table of First-order Sensitivity Indices S(1) for Abundances with Mass Numbers A = 161–166 for the Neutron-star Merger Scenario

Max. Rel.
( )´ S100 1 [%] (95% C.I.)

Nuclide Variable Unc. [%] A = 161 162 163 164 165 166

159Pm T1/2 2.6 0.2 (±0.4) — — — — —
160Pm T1/2 1.8 0.6 (±0.8) 0.1 (±0.3) — — — —
161Pm T1/2 2.8 2.5 (±1.4) 0.2 (±0.4) — — — —
162Pm T1/2 8.1 — 21.4 (±3.9) 1.2 (±1.0) 2.1 (±1.2) 0.3 (±0.5) —
163Pm T1/2 11.6 — — 27.9 (±4.7) — 0.4 (±0.5) 0.5 (±0.5)
164Pm T1/2 13.6 — — — 4.0 (±1.9) — 0.4 (±0.6)
165Pm T1/2 37.4 0.1 (±0.3) — — 0.7 (±0.7) 73.3 (±7.6) 17.3 (±4.2)
166Pm T1/2 57.5 — — — — 0.7 (±0.7) 2.5 (±1.5)
161Sm T1/2 10.1 76.1 (±7.9) 0.9 (±0.9) 1.9 (±1.2) 0.2 (±0.4) — —
162Sm T1/2 9.0 — 71.9 (±7.5) 19.9 (±3.8) 2.6 (±1.4) 0.5 (±0.6) 0.1 (±0.3)
163Sm T1/2 11.7 — — 46.6 (±6.2) — 0.9 (±0.8) 0.5 (±0.8)
164Sm T1/2 4.1 — — — 27.1 (±4.4) 0.6 (±0.6) 1.6 (±0.9)
165Sm T1/2 9.3 — — — — 5.6 (±2.2) —
166Sm T1/2 15.9 0.1 (±0.2) — — — 0.2 (±0.3) 50.2 (±6.2)
167Sm T1/2 24.9 — — — — — —
168Sm T1/2 59.5 0.7 (±0.7) 0.1 (±0.3) 0.2 (±0.2) — — 0.1 (±0.3)
165Eu T1/2 6.4 — — — — 1.5 (±1.1) 0.8 (±0.8)
166Eu T1/2 11.4 — — — — — 2.5 (±1.3)
167Eu T1/2 8.9 — — — — — —
168Eu T1/2 10.9 — — — — — —
169Eu T1/2 23.7 — — — — — —
170Eu T1/2 37.6 — — — — — —
167Gd T1/2 80.1 0.2 (±0.4) — — — — 1.9 (±1.4)
168Gd T1/2 15.8 — — — — — —
169Gd T1/2 11.0 — — — — — —
170Gd T1/2 13.9 0.1 (±0.1) — — — — —
171Gd T1/2 37.0 — — — — — —
172Gd T1/2 69.3 0.1 (±0.3) 0.1 (±0.1) 0.1 (±0.1) — — —
159Pm Pn (100) — — — — — —
160Pm Pn (100) — — — — — —
161Pm Pn 10.1 0.1 (±0.2) — — — — —
162Pm Pn 10.6 0.5 (±0.5) — — — — —
163Pm Pn 14.8 — 4.9 (±1.9) — 0.4 (±0.5) 0.3 (±0.3) —
164Pm Pn 29.1 — — 2.4 (±1.4) — 0.1 (±0.2) —
165Pm Pn 47.0 — — — 59.7 (±7.1) 3.5 (±1.8) 1.2 (±1.2)
166Pm Pn (100) — — — — 10.5 (±2.7) 1.3 (±1.0)
161Sm Pn (100) 7.5 (±2.4) 0.4 (±0.2) — — — —
162Sm Pn (100) 11.1 (±2.8) 0.8 (±0.8) 0.1 (±0.3) — — —
163Sm Pn (100) — — — — — —
164Sm Pn (100) — — 0.7 (±0.7) 0.1 (±0.2) — —
165Sm Pn 29.4 — — — 0.1 (±0.3) — —
166Sm Pn 31.5 — — — — 0.7 (±0.8) —
167Sm Pn (100) — — — — — 0.4 (±0.6)
168Sm Pn (100) — — — — — —
165Eu Pn (100) — — — 0.2 (±0.4) — —
166Eu Pn 27.0 — — — — 0.1 (±0.2) —
167Eu Pn 19.5 — — — — — 0.6 (±0.6)
168Eu Pn 16.8 — — — — — —
169Eu Pn 39.8 — — — — — —
170Eu Pn (100) — — — — — —
167Gd Pn (100) — — — — — 17.1 (±3.6)
168Gd Pn (100) — — — — — —
169Gd Pn (100) — — — — — —
170Gd Pn (100) — — — — — —
171Gd Pn (100) — — — — — —
172Gd Pn (100) — — — — — —

Note. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the nominal value,
in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in Dimitriou et al.
(2021). Dashes (—) indicate that the nominal value of ( )´ S100 1 is equal to or lower than 0.0.
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Table B2
Table of First-order Sensitivity Indices S(1) for Abundances with Mass Numbers A = 167–173 for the Neutron-star Merger Scenario

Max. Rel.
( )´ S100 1 [%] (95% C.I.)

Nuclide Variable Unc. [%] A = 167 168 169 170 171 172 173

159Pm T1/2 2.6 — — — — — — —
160Pm T1/2 1.8 — — — — — — —
161Pm T1/2 2.8 — — — — — — —
162Pm T1/2 8.1 — — — — — — —
163Pm T1/2 11.6 0.1 (±0.1) 0.1 (±0.1) — — — — —
164Pm T1/2 13.6 — — — — — — —
165Pm T1/2 37.4 0.2 (±0.4) 1.9 (±1.1) 3.2 (±1.5) 4.9 (±1.9) 2.7 (±1.5) 0.8 (±0.9) 0.4 (±0.6)
166Pm T1/2 57.5 0.2 (±0.4) — 0.3 (±0.3) 0.5 (±0.6) 0.7 (±0.7) 0.3 (±0.5) 0.2 (±0.4)
161Sm T1/2 10.1 — — — — — — —
162Sm T1/2 9.0 — — — — — — —
163Sm T1/2 11.7 0.1 (±0.2) — — — — — —
164Sm T1/2 4.1 0.2 (±0.3) 0.1 (±0.2) — — — — —
165Sm T1/2 9.3 0.1 (±0.2) 0.1 (±0.3) — 0.1 (±0.3) — — —
166Sm T1/2 15.9 2.1 (±1.3) 0.4 (±0.5) 1.7 (±1.2) 4.8 (±1.9) 3.8 (±1.7) 1.5 (±1.0) 0.8 (±0.7)
167Sm T1/2 24.9 0.7 (±0.7) 0.6 (±0.6) 0.1 (±0.4) 0.3 (±0.5) 1.1 (±0.9) 0.9 (±0.8) 0.6 (±0.7)
168Sm T1/2 59.5 1.7 (±1.3) 60.9 (±6.6) 55.1 (±7.1) 14.6 (±4.4) 32.6 (±5.0) 43.5 (±5.5) 41.6 (±5.6)
165Eu T1/2 6.4 — — — — — — —
166Eu T1/2 11.4 0.2 (±0.3) — 0.1 (±0.1) — — — —
167Eu T1/2 8.9 1.3 (±1.0) 0.1 (±0.3) 0.3 (±0.5) 0.3 (±0.4) 0.1 (±0.2) — —
168Eu T1/2 10.9 — 0.5 (±0.7) — 0.1 (±0.6) 0.2 (±0.5) 0.1 (±0.2) 0.1 (±0.1)
169Eu T1/2 23.7 — — 3.6 (±1.4) 0.2 (±0.2) 0.4 (±0.6) 0.9 (±0.8) 0.7 (±0.7)
170Eu T1/2 37.6 — — — 0.6 (±0.9) — 0.1 (±0.2) 0.1 (±0.3)
167Gd T1/2 80.1 90.4 (±9.6) 6.1 (±2.5) 26.6 (±4.3) 34.2 (±6.2) 14.6 (±3.9) 3.5 (±1.8) 1.2 (±1.1)
168Gd T1/2 15.8 — 24.3 (±4.6) 8.3 (±2.7) 8.1 (±2.8) 2.2 (±1.5) 0.4 (±0.6) 0.1 (±0.4)
169Gd T1/2 11.0 — — 0.8 (±0.8) 0.1 (±0.1) 0.2 (±0.4) 0.2 (±0.4) 0.2 (±0.3)
170Gd T1/2 13.9 — — — 25.2 (±4.7) 1.4 (±1.2) 2.6 (±1.4) 3.5 (±1.7)
171Gd T1/2 37.0 — — — 0.1 (±0.2) 20.5 (±4.1) 4.6 (±2.0) 1.0 (±1.1)
172Gd T1/2 69.3 — — — — 3.6 (±2.1) 35.7 (±5.1) 49.3 (±5.9)
159Pm P1n (100) — — — — — — —
160Pm P1n (100) — — — — — — —
161Pm P1n 10.1 — — — — — — —
162Pm P1n 10.6 — — — — — — —
163Pm P1n 14.8 — — — — — — —
164Pm P1n 29.1 — — — — — — —
165Pm P1n 47.0 0.1 (±0.7) — 0.6 (±0.6) 0.7 (±0.5) 0.4 (±0.3) 0.1 (±0.2) 0.1 (±0.1)
166Pm P1n (100) 0.1 (±0.2) 0.2 (±0.4) 0.1 (±0.5) 0.3 (±0.6) 0.3 (±0.4) 0.1 (±0.2) 0.1 (±0.2)
161Sm P1n (100) — — — — — — —
162Sm P1n (100) — — — — — — —
163Sm P1n (100) — — — — — — —
164Sm P1n (100) — — — — — — —
165Sm P1n 29.4 — — — — — — —
166Sm P1n 31.5 — — — — — — —
167Sm P1n (100) — — — — — — —
168Sm P1n (100) 1.1 (±1.1) 0.2 (±0.4) — 0.3 (±0.7) 0.8 (±0.8) 0.6 (±0.6) 0.4 (±0.4)
165Eu P1n (100) — — — — — — —
166Eu P1n 27.0 — — — — — — —
167Eu P1n 19.5 — — — — — — —
168Eu P1n 16.8 — — — — — — —
169Eu P1n 39.8 — 5.4 (±2.1) — 3.7 (±1.6) 3.6 (±1.7) 1.3 (±1.0) 0.6 (±0.7)
170Eu P1n (100) — — 0.5 (±0.6) 0.1 (±0.2) 0.2 (±0.3) 0.1 (±0.3) 0.1 (±0.3)
167Gd P1n (100) 1.9 (±1.2) 0.1 (±0.3) — — — — —
168Gd P1n (100) — — — — — — —
169Gd P1n (100) — — — — — — —
170Gd P1n (100) — — 0.1 (±0.3) — 0.1 (±0.2) 0.1 (±0.1) —
171Gd P1n (100) — — — 0.3 (±0.4) — — —
172Gd P1n (100) — — — — 5.5 (±2.0) 3.2 (±1.5) 0.6 (±0.7)

Note. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the nominal value,
in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in Dimitriou et al.
(2021). Dashes (—) indicate that the nominal value of ( )´ S100 1 is equal to or lower than 0.0.
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Table B3
Table of First-order Sensitivity Indices S(1) for Abundances with Mass Numbers A = 161–166 for the Hot Wind Scenario

Max. Rel.
( )´ S100 1 [%] (95% C.I.)

Nuclide Variable Unc. [%] A = 161 162 163 164 165 166

159Pm T1/2 2.6 — — — — — —
160Pm T1/2 1.8 0.1 (±0.4) — — — — —
161Pm T1/2 2.8 0.7 (±0.7) 0.1 (±0.3) — — — —
162Pm T1/2 8.1 0.1 (±0.2) 7.2 (±2.6) 2.5 (±1.4) — — —
163Pm T1/2 11.6 — — 14.7 (±3.3) 0.7 (±0.6) 0.1 (±0.1) —
164Pm T1/2 13.6 — — 0.4 (±0.6) 0.3 (±0.5) 0.3 (±0.4) —
165Pm T1/2 37.4 0.3 (±0.5) 1.0 (±0.9) — 1.0 (±0.9) 61.3 (±10.5) 33.0 (±5.0)
166Pm T1/2 57.5 0.2 (±0.3) 0.2 (±0.5) — 1.1 (±0.9) 11.2 (±4.0) 2.1 (±1.3)
161Sm T1/2 10.1 4.9 (±2.1) 0.4 (±0.6) — — — —
162Sm T1/2 9.0 — 7.5 (±2.5) 2.2 (±1.3) — — —
163Sm T1/2 11.7 — — 4.1 (±1.7) 0.1 (±0.3) — —
164Sm T1/2 4.1 — — — 0.6 (±0.6) 0.1 (±0.3) —
165Sm T1/2 9.3 — — — — 0.3 (±0.6) 0.5 (±0.7)
166Sm T1/2 15.9 0.1 (±0.2) 0.2 (±0.4) — — — 19.2 (±3.9)
167Sm T1/2 24.9 — 0.1 (±0.2) — — — 0.3 (±0.5)
168Sm T1/2 59.5 19.2 (±4.7) 45.4 (±8.4) 0.3 (±0.5) 0.3 (±0.5) -0.1 (±0.2) 1.7 (±1.2)
165Eu T1/2 6.4 — — — — — —
166Eu T1/2 11.4 — — — — — —
167Eu T1/2 8.9 — — — — — —
168Eu T1/2 10.9 — — — — — —
169Eu T1/2 23.7 — — — — — —
170Eu T1/2 37.6 — — — — — —
167Gd T1/2 80.1 — — — — — 0.5 (±0.7)
168Gd T1/2 15.8 — — — — — —
169Gd T1/2 11.0 — — — — — —
170Gd T1/2 13.9 — — — — — —
171Gd T1/2 37.0 0.1 (±0.1) 0.1 (±0.3) — — — —
172Gd T1/2 69.3 1.2 (±1.0) 2.4 (±1.3) — — — 0.1 (±0.2)
159Pm P1n (100) — — — — — —
160Pm P1n (100) — — — — — —
161Pm P1n 10.1 0.5 (±0.7) — — — — —
162Pm P1n 10.6 16.7 (±3.6) 3.6 (±1.7) — — — —
163Pm P1n 14.8 — 19.1 (±3.8) 4.7 (±1.9) — — —
164Pm P1n 29.1 — — 70.1 (±7.3) 4.6 (±1.7) — —
165Pm P1n 47.0 0.1 (±0.3) 0.5 (±0.6) 0.2 (±0.2) 91.8 (±7.9) 13.5 (±3.7) 6.9 (±2.3)
166Pm P1n (100) — 0.1 (±0.3) — — 11.5 (±2.6) 19.9 (±3.6)
161Sm P1n (100) 15.6 (±3.5) 0.1 (±0.1) — — — —
162Sm P1n (100) 39.5 (±5.0) 8.3 (±2.5) — — — —
163Sm P1n (100) — — — — — —
164Sm P1n (100) — — 1.9 (±1.3) 0.2 (±0.3) — —
165Sm P1n 29.4 — — — 0.3 (±0.5) 0.1 (±0.2) —
166Sm P1n 31.5 — — — — 1.0 (±0.8) 1.2 (±1.0)
167Sm P1n (100) — — — — — 3.0 (±1.5)
168Sm P1n (100) 0.2 (±0.3) 1.2 (±0.9) 0.1 (±0.2) — — 1.2 (±1.0)
165Eu P1n (100) — — — — — —
166Eu P1n 27.0 — — — — — 0.1 (±0.2)
167Eu P1n 19.5 — — — — — 0.1 (±0.4)
168Eu P1n 16.8 — — — — — —
169Eu P1n 39.8 — 0.2 (±0.3) — — — —
170Eu P1n (100) — — — — — —
167Gd P1n (100) — 0.1 (±0.3) — — — 9.5 (±2.6)
168Gd P1n (100) — — — — — —
169Gd P1n (100) — — — — — —
170Gd P1n (100) — — — — — —
171Gd P1n (100) — — — — — —
172Gd P1n (100) 0.1 (±0.2) 0.2 (±0.4) — — — —

Note. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the nominal value,
in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in Dimitriou et al.
(2021). Dashes (—) indicate that the nominal value of ( )´ S100 1 is equal to or lower than 0.0.
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Table B4
Table of First-order Sensitivity Indices S(1) for Abundances with Mass Numbers A = 167–173 for the Hot Wind Scenario

Max. Rel. 100 ( )´S 1 [%] (95% C.I.)

Nuclide Variable Unc. [%] A = 167 168 169 170 171 172 173

159Pm T1/2 5.2 — — — — — — —
160Pm T1/2 2.7 — — — — — — —
161Pm T1/2 5.5 — — — — — — —
162Pm T1/2 6.5 — — — — — — —
163Pm T1/2 9.0 — — — — — — —
164Pm T1/2 13.8 — — — — — — —
165Pm T1/2 38.1 4.6 (±1.9) 0.2 (±0.3) 0.3 (±0.4) 0.1 (±0.2) — — —
166Pm T1/2 52.7 1.1 (±0.9) 0.1 (±0.2) — 0.1 (±0.2) — — —
161Sm T1/2 45.3 — — — — — — —
162Sm T1/2 8.2 — — — — — — —
163Sm T1/2 5.8 — — — — — — —
164Sm T1/2 4.2 — — — — — — —
165Sm T1/2 12.1 0.2 (±0.3) — — — — — —
166Sm T1/2 16.6 2.4 (±1.4) 0.2 (±0.3) 0.2 (±0.4) 0.2 (±0.3) — — —
167Sm T1/2 37.9 4.4 (±2.1) — 0.6 (±0.6) 0.4 (±0.6) 0.1 (±0.3) — —
168Sm T1/2 59.9 27.1 (±5.6) 97.3 (±16.8) 86.0 (±7.3) 97.1 (±9.1) 30.7 (±5.4) 30.7 (±6.5) 55.0 (±12.2)
165Eu T1/2 8.7 — — — — — — —
166Eu T1/2 13.0 — — — — — — —
167Eu T1/2 10.0 0.2 (±0.3) — — — — — —
168Eu T1/2 14.8 — — 0.1 (±0.3) — — — —
169Eu T1/2 23.3 — — 1.4 (±1.0) 0.4 (±0.6) — — —
170Eu T1/2 37.1 — — 0.1 (±0.2) — — — —
167Gd T1/2 64.9 4.9 (±2.1) 0.1 (±0.2) 0.2 (±0.3) — — — —
168Gd T1/2 13.8 — 0.1 (±0.3) 1.5 (±1.1) — — — —
169Gd T1/2 11.9 — — 0.1 (±0.3) — — — —
170Gd T1/2 13.9 — — — 1.0 (±0.9) 0.3 (±0.5) 0.1 (±0.3) —
171Gd T1/2 28.3 — — — — 1.9 (±1.3) 0.3 (±0.6) 1.0 (±0.9)
172Gd T1/2 267.1 — — — 0.1 (±0.2) 20.1 (±4.3) 47.4 (±7.7) 28.2 (±5.3)
159Pm P1n (100) — — — — — — —
160Pm P1n (100) — — — — — — —
161Pm P1n 10.6 — — — — — — —
162Pm P1n 14.0 — — — — — — —
163Pm P1n 16.1 — — — — — — —
164Pm P1n 33.4 — — — — — — —
165Pm P1n (100) 0.2 (±0.5) — — — — — —
166Pm P1n (100) 0.2 (±0.5) — — — — — —
161Sm P1n (100) — — — — — — —
162Sm P1n (100) — — — — — — —
163Sm P1n (100) — — — — — — —
164Sm P1n (100) — — — — — — —
165Sm P1n 34.5 — — — — — — —
166Sm P1n 37.1 — — — — — — —
167Sm P1n (100) 0.2 (±0.3) — — — — — —
168Sm P1n (100) 47.6 (±5.7) 0.8 (±0.9) 0.7 (±0.7) 0.1 (±0.3) 0.1 (±0.1) — —
165Eu P1n (100) — — — — — — —
166Eu P1n 32.8 — — — — — — —
167Eu P1n 17.5 0.1 (±0.2) — — — — — —
168Eu P1n 22.4 3.7 (±1.7) 0.2 (±0.3) — — — — —
169Eu P1n 43.3 — 0.7 (±0.8) 7.2 (±2.4) 0.4 (±0.6) — — —
170Eu P1n (100) — — 2.0 (±1.3) 1.0 (±0.8) — — —
167Gd P1n (100) 1.5 (±1.2) — — — — — —
168Gd P1n (100) 0.2 (±0.5) — — — — — —
169Gd P1n (100) — — — — — — —
170Gd P1n (100) — — 0.2 (±0.4) 0.1 (±0.3) — — —
171Gd P1n 61.4 — — — 0.2 (±0.4) 0.1 (±0.3) — —
172Gd P1n (100) — — — 0.1 (±0.2) 44.8 (±6.2) 16.7 (±4.1) 13.2 (±3.4)

Note. The maximum relative uncertainty (third column) is the ratio of the size of the larger one of the upper or lower experimental uncertainties to the nominal value,
in percent. (100) indicates that the P1n value only has an upper limit and the size of its relative uncertainty is 100%, according to the convention in Dimitriou et al.
(2021). Dashes (—) indicate that the nominal value of ( )´ S100 1 is equal to or lower than 0.0.
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