51 research outputs found

    A Novel Technique to Improve Anastomotic Perfusion Prior to Esophageal Surgery: Hybrid Ischemic Preconditioning of the Stomach. Preclinical Efficacy Proof in a Porcine Survival Model

    Get PDF
    Esophagectomy often presents anastomotic leaks (AL), due to tenuous perfusion of gastric conduit fundus (GCF). Hybrid (endovascular/surgical) ischemic gastric preconditioning (IGP), might improve GCF perfusion. Sixteen pigs undergoing IGP were randomized: (1) Max-IGP (n = 6): embolization of left gastric artery (LGA), right gastric artery (RGA), left gastroepiploic artery (LGEA), and laparoscopic division (LapD) of short gastric arteries (SGA); (2) Min-IGP (n = 5): LGA-embolization, SGA-LapD; (3) Sham (n = 5): angiography, laparoscopy. At day 21 gastric tubulation occurred and GCF perfusion was assessed as: (A) Serosal-tissue-oxygenation (StO2) by hyperspectral-imaging; (B) Serosal time-to-peak (TTP) by fluorescence-imaging; (C) Mucosal functional-capillary-density-area (FCD-A) index by confocal-laser-endomicroscopy. Local capillary lactates (LCL) were sampled. Neovascularization was assessed (histology/immunohistochemistry). Sham presented lower StO2 and FCD-A index (41 ± 10.6%; 0.03 ± 0.03 respectively) than min-IGP (66.2 ± 10.2%, p-value = 0.004; 0.22 ± 0.02, p-value < 0.0001 respectively) and max-IGP (63.8 ± 9.4%, p-value = 0.006; 0.2 ± 0.02, p-value < 0.0001 respectively). Sham had higher LCL (9.6 ± 4.8 mL/mol) than min-IGP (4 ± 3.1, p-value = 0.04) and max-IGP (3.4 ± 1.5, p-value = 0.02). For StO2, FCD-A, LCL, max- and min-IGP did not differ. Sham had higher TTP (24.4 ± 4.9 s) than max-IGP (10 ± 1.5 s, p-value = 0.0008) and min-IGP (14 ± 1.7 s, non-significant). Max- and min-IGP did not differ. Neovascularization was confirmed in both IGP groups. Hybrid IGP improves GCF perfusion, potentially reducing post-esophagectomy AL

    Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia

    Get PDF
    Background and aim: Surgeons currently rely on visual clues to estimate the presence of sufficient vascularity for safe anastomosis. We aimed to assess the accuracy of endoluminal confocal laser endomicroscopy (CLE) and laparoscopic fluorescence-based enhanced reality (FLER), using near-infrared imaging and fluorescence from injected Indocyanine Green, to identify the transition from ischemic to vascular areas in a porcine model of mesenteric ischemia. Methods: Six pigs underwent 1-h sigmoid segmental ischemia. The ischemic area was evaluated by clinical assessment and FLER to determine presumed viable margins. For each sigmoid colon, 5 regions of interest (ROIs) were identified: ischemic (ROI 1), presumed viable margins ROI 2a (distal) and 2b (proximal), and vascular areas 3a (distal) and 3b (proximal). After injection of fluorescein, CLE scanning of the mucosa from the ischemic area toward viable margins was performed. Capillary blood samples were obtained by puncturing the serosa at the ROIs, and capillary lactates were measured with the EDGE® analyzer. Results: Capillary lactates were significantly higher at ROI 1 (4.91mmol/L) when compared to resection margins (2.8mmol/L; mean difference: 2.11; p<0.05) identified by FLER. There was no significant difference in lactates between ROI1 and resection margins identified by clinical evaluation. In 50% of cases, ROI 2aCLINIC-2bCLINIC were considered to match (<1cm distance) with ROI 2aFLER-2bFLER. Confocal analysis revealed specific clues to identify the transition from ischemic to viable areas corresponding to those assessed by FLER in 11/12 cases versus 7/12 for those identified by clinical evaluation. Conclusions: In this experimental model, FLER and CLE were more accurate than clinical evaluation to delineate bowel vascularization

    PERFUSION SLOPE : PERFECT 20170607 PATIENT10

    No full text
    Example of Perfusion map computation thanks to fluorescence flow. Human clinical Trial Application :<br>Perfusion Evaluation by Real-time Fluorescence-based Enhanced Reality of Anastomosis (PERFECT)<br><em>ClinicalTrials.gov identifier (NCT number): <strong>NCT02626091</strong></em

    PERFUSION SLOPE+Augmented Reality : PERFECT 20170607 PATIENT10

    No full text
    Example of Perfusion map computation thanks to fluorescence flow. Human clinical Trial Application :<br>Perfusion Evaluation by Real-time Fluorescence-based Enhanced Reality of Anastomosis (PERFECT)<br><em>ClinicalTrials.gov identifier (NCT number): <strong>NCT02626091</strong></em

    Tree Matching Applied to Vascular System

    No full text
    International audienceno abstrac
    corecore