66 research outputs found

    NONLINEAR ANALYSIS OF SOLID REINFORCED CONCRETE STRUCTURES WITH CRACKS

    Get PDF
    A finite element method, as well as the algorithm and the program for solid reinforced concrete structures analysis have been developed, taking into account plastic deformations of concrete. A modified Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic model. An eight-node solid finite element with linear approximation of displacement functions, which implements the deformation models above mentioned, is constructed. This finite element is adapted to the PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results with experimental data confirmed the high accuracy and reliability of the results obtained

    APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Get PDF
    Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions) for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists

    Models of nonlinear deformation of concrete in a triaxial stress state and their implementation in the PRINS computational complex

    Get PDF
    Modern construction standards and regulations prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation with account of the real properties of concrete and reinforcement. However, the most of finite-element program complexes cannot perform such calculations in a nonlinear formulation with account of plastic deformations of concrete and reinforcement. To solve this problem, a methodology has been developed and a solid finite element adapted to the PRINS computing complex has been created, which made it possible to perform calculations of reinforced concrete structures considering their actual work. The aim of the study - development and implementation of a method for calculating reinforced concrete structures under conditions of a three-dimensional stress state, considering both brittle fracture and elastic-plastic deformation of concrete. A finite-element methodology, algorithm, and program for calculation of massive reinforced concrete structures with account of plastic deformations of concrete have been presented. The methodology is based on the modified Willam and Warnke strength criterion supplemented with the flow criterion. Two models of volumetric deformation of concrete have been regarded: the elastic model at brittle failure and the ideal elastoplastic model. An eight-node finite element with linear approximating functions of displacements implementing the mentioned deformation models is created. Verification calculations of a massive concrete structure in three-axial compression testify to the accuracy and convergence of the developed finite elements. The PRINS can be effectively used by engineers of designing and scientific organizations to solve a wide class of engineering problems related to calculations of building structures

    Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis

    Get PDF
    Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content

    The effect of cracks on the bearing capacity of reinforced concrete slabs

    No full text
    Cracks occur in reinforced concrete slabs for two reasons - due to increased operational loads and due to manufacturing and installation defects. When cracks are detected, the question arises about the residual bearing capacity of the slab and the need of its strengthening. To solve this problem by calculation, it is necessary to take into account physical nonlinearity. An algorithm for the calculation by the finite element method is proposed. The main feature of the algorithm is the use of multilayered finite elements, which allows modeling the cracks by specifying the corresponding material characteristics of those layers which the crack passes through. A method for determining the bearing capacity of a slab with cracks after its reinforcement with composite fabrics is also considered. An example of the study of the stress-strain state of a reinforced concrete slab with cracks by the proposed method is given. The implementation of the algorithm in the PRINS program is described and the possibility of using this program for solving practical problems is discussed

    Realization of reinforced concrete structures analysis with the account of physical and geometrical nonlinearity in computer program PRINS

    No full text
    An algorithm of physically and geometrically nonlinear static analysis of structures by the finite element method is described, the distinguishing feature of which is the use of a full nonlinear stiffness matrix. This matrix is represented as the sum of five terms, namely, the stiffness matrix of the zero, first and second order, as well as matrices of initial displacements and initial stresses. When using modified Lagrange coordinates, the matrix of the initial displacements becomes a zero matrix. The calculation is carried out by a step-by-step method. Features of the application of this technique in the calculation of reinforced concrete structures are considered. The examples of static nonlinear analysis of reinforced concrete structures with the aid of program PRINS are given

    Analysis of high-rise constructions with the using of three-dimensional models of rods in the finite element program PRINS

    No full text
    The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis

    The family of multilayered finite elements for the analysis of plates and shells of variable thickness

    Get PDF
    Urban development requires careful attitude to environment on the one hand and protection of the population from the natural phenomena on the other. To solve these problems, various building structures are used, in which slabs and shells of variable thickness find the wide application. In this work, the family of multilayered finite elements for the analysis of plates and shells of variable thickness is described. The family is based on the simplest flat triangular element of the Kirchhoff type. The lateral displacements in this element are approximated by an incomplete cubic polynomial. Such an element is unsuitable for practical use, but on its basis, improved elements of triangular and quadrilateral shape are built. Particular attention is paid to taking into account the variability of the cross-section. The results of the developed elements testing are presented, and the advantages of their use in the practice of designing and calculating the structures are shown

    Letters

    No full text
    • …
    corecore