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Abstract. Urban development requires careful attitude to environment on 

the one hand and protection of the population from the natural phenomena 

on the other. To solve these problems, various building structures are used, 

in which slabs and shells of variable thickness find the wide application. In 

this work, the family of multilayered finite elements for the analysis of plates 

and shells of variable thickness is described. The family is based on the 

simplest flat triangular element of the Kirchhoff type. The lateral 

displacements in this element are approximated by an incomplete cubic 

polynomial. Such an element is unsuitable for practical use, but on its basis, 

improved elements of triangular and quadrilateral shape are built. Particular 

attention is paid to taking into account the variability of the cross-section. 

The results of the developed elements testing are presented, and the 

advantages of their use in the practice of designing and calculating the 

structures are shown.  

1 Introduction  

Plates and shells of variable thickness are used in various fields of technology, both as 

the independent elements and as the part of combined systems. In aviation, for example, such 

structures include blades of propellers of airplanes  having a complex spatial configuration, 

and some elements of the wing design [1-3]. In the construction the slabs and shells of 

variable cross-section are used mainly in reinforced concrete structures. A classic example 

of a shell of variable thickness is, for example, a cooling tower shell [4]. Variable cross-

section panels are used in frameworks of bridges, retaining walls, overpasses, prefabricated 

large-size slabs for industrial and civil buildings of types “T”, “2T” and other structures [5-

10]. In particular, when designing reinforced concrete floor slabs or roof slabs, a method of 

stress reduction is often used both in the marginal and in the main part of the slab due to its 

gradual thickening towards the contour line. In some cases, this technique significantly 

changes the working conditions of the plate, which begins to work like a depressed shell, as 

a result of its middle surface warping. When calculating such constructions using the finite 

element method, it is necessary to use shell finite elements of both constant and variable 

thickness. However, variable thickness elements are available not in all finite element 

programs. Therefore, calculators and designers using such programs are forced to simplify 
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design schemes and present slabs of varying thickness as stepped slabs [11-18]. This leads to 

a distortion of the stress-strain state of the structures being calculated. It should be noted that 

in the works devoted to the calculation of reinforced concrete slabs taking into account the 

non-linearity of deformation, plates of constant section are also mainly considered (see, for 

example, [19-25]). 

The lack of accessible and approved methods for calculating plates of variable thickness 

creates problems in the design and calculation of structures containing similar elements. It is 

possible that this is one of the reasons that, in practice, plates of constant thickness are used 

in cases when there is no need from the point of view of the logic of the structure work, for 

example, when arranging balconies or loggias, because it leads to waste of material. The 

above-mentioned problems are solved in the computer program PRINS, which includes finite 

elements of plates and shells of variable thickness of triangular and quadrilateral shape, 

intended for both linear and non-linear calculations. 

2 Methods 

The following describes the family of multilayer finite elements implemented in the computer 

program PRINS, a general description of which can be found in [22, 23]. This article 

discusses the features of the forming of stiffness matrices associated with the variability of 

the cross-section of elements. 

 The basis of the developed family is the simplest multilayered element of a triangular 

shape, shown in Fig.1. The first degree polynomials for displacements in the plane and the 

incomplete cubic polynomial for lateral displacements are taken as approximating functions. 

It is assumed that the thickness of the element varies linearly. The division into layers, which 

was adopted during the formation of element characteristics, is shown in Fig.1. 

 

Fig. 1. Multylayered triangle finite element. 

 

Fig. 2. Local axes for triangle element 

The stiffness matrix of an element is calculated by the formula (see, for example, [16]); 

Kel = ∫BT

V

CBdv 

 

(1) 

where Bis the geometric matrix, connecting the components of the deformations and 

displacements, andC is the physical matrix, connecting the stress components with the 

components of the strains. 

When using the Kirchhoff hypothesis and adopted approximating functions of 

displacements, the matrixB is reduced to the form [16]: 

B = [BPAP
−1 ⋮ −zBbAb

−1] (2) 

where BP, AP
−1and  Ab

−1 −some numerical matrices, Bb − the matrix, whose elements depend 

on the x and y coordinates of the inner points of the finite element (methods for calculating 

of these matrices are well known; see, for example, [16]). 
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Substituting (2) into (1), we obtain 

K𝑒𝑙 = [
Kp Kpb

Kpb
T Kb

] 
(3) 

where 

Kp = ∫[AP
−1]T

V

Bp
TCBPAP

−1dv; 

Kb = ∫z2[Ab
−1]T

V

Bb
TCBbAb

−1dv; 

Kpb = ∫−z[AP
−1]T

V

Bp
TCBbAb

−1dv. 

 

 

 

 

(4) 

We now take into account the variability of the thickness of the element. We consider the 

course of calculations on the example of the Kbmatrix. 

Integration over the coordinate z in the second line of formula (4) will be performed in 

layers, assuming that the properties of the material do not change over the thickness of the 

layer. We get: 

 

(5) 

where 𝑧𝑙,𝑏 and 𝑧𝑙,𝑡  are the coordinates of the lower and upper boundary of the layer along the 

z axis. 

The integration in the formula (5) is performed over the area F of the triangle. 

Values 𝑧𝑙,𝑡  and 𝑧𝑙,𝑏 depend on the coordinates x and y. We assume that the thickness of 

the plate varies according to a linear law. Then for any layer of the slab, we can write:  

𝑧𝑙 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 (6) 

The coefficients 𝑎1 ÷ 𝑎3 entering into formula (6) can be found from the condition that 

the z coordinates of the layer at the nodal points are known. We get: 

- at  𝑥 = 0  and 𝑦 = 0  𝑧𝑙 = 𝑧𝑖,𝑙 = 𝑎1; 

- at 𝑥 = 𝑥𝑗  and 𝑦 = 0 𝑧𝑙 = 𝑧𝑗,𝑙 = 𝑎1 + 𝑎2𝑥𝑗 ; 

- at 𝑥 = 𝑥𝑘 and 𝑦 = 𝑦𝑘 𝑧𝑙 = 𝑧𝑘,𝑙 = 𝑎1 + 𝑎2𝑥𝑘 + 𝑎3𝑦𝑘 . 

From the above conditions we find: 

𝑎1 = 𝑧𝑖,𝑙;  𝑎2 =
𝑧𝑗,𝑙 − 𝑎1

𝑥𝑗

=
𝑧𝑗,𝑙 − 𝑧𝑖,𝑙

𝑥𝑗

; 

𝑎3 =
𝑧𝑘,𝑙 − 𝑎1 − 𝑎2𝑥𝑘

𝑦𝑘

=

𝑧𝑘,𝑙 − 𝑧𝑖,𝑙 −
𝑧𝑗,𝑙 − 𝑧𝑖,𝑙

𝑥𝑗
𝑥𝑘

𝑦𝑘

. 

 

(7) 

With account of relations (7), formula (6) takes the form 

𝒛𝒍 = 𝒛𝒊,𝒍 +
𝒛𝒋,𝒍 − 𝒛𝒊,𝒍

𝒙𝒋

𝒙 +

𝒛𝒌,𝒍 − 𝒛𝒊,𝒍 −
𝒛𝒋,𝒍 − 𝒛𝒊,𝒍

𝒙𝒋
𝒙𝒌

𝒚𝒌

𝒚. 

 

 

(8) 

In accordance with (8), the z-coordinates of points of the upper and lower surfaces of 

the layer will be determined by the formulas: 
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𝑧𝑙
𝑡 = 𝑧𝑖,𝑙

𝑡 +
𝑧𝑗,𝑙

𝑡 − 𝑧𝑖,𝑙
𝑡

𝑥𝑗

𝑥 +

𝑧𝑘,𝑙
𝑡 − 𝑧𝑖,𝑙

𝑡 −
𝑧𝑗,𝑙

𝑡 − 𝑧𝑖,𝑙
𝑡

𝑥𝑗
𝑥𝑘

𝑦𝑘

𝑦. 

 

 

(9) 

𝑧𝑙
𝑏 = 𝑧𝑖,𝑙

𝑏 +
𝑧𝑗,𝑙

𝑏 − 𝑧𝑖,𝑙
𝑏

𝑥𝑗

𝑥 +

𝑧𝑘,𝑙
𝑏 − 𝑧𝑖,𝑙

𝑏 −
𝑧𝑗,𝑙

𝑏 − 𝑧𝑖,𝑙
𝑏

𝑥𝑗
𝑥𝑘

𝑦𝑘

𝑦. 

 

 

(10) 

We write the formulas (9) and (10) in the form: 

𝑧𝑙
𝑡 = 𝑎1,𝑡 + 𝑎2,𝑡𝑥 + 𝑎3,𝑡𝑦; 

𝑧𝑙
𝑏 = 𝑎1,𝑏 + 𝑎2,𝑏𝑥 + 𝑎3,𝑏𝑦, 

 

(11) 

where 

𝑎1,𝑡 = 𝑧𝑖,𝑙
𝑡 ;  𝑎2,𝑡 =

𝑧𝑗,𝑙
𝑡 − 𝑧𝑖,𝑙

𝑡

𝑥𝑗

;  𝑎3,𝑡 =

𝑧𝑘,𝑙
𝑡 − 𝑧𝑖,𝑙

𝑡 −
𝑧𝑗,𝑙

𝑡 − 𝑧𝑖,𝐿
𝑡

𝑥𝑗
𝑥𝑘

𝑦𝑘

; 

𝑎1,𝑏 = 𝑧𝑖,𝑙
𝑏 ;  𝑎2,𝑏 =

𝑧𝑗,𝑙
𝑏 − 𝑧𝑖,𝑙

𝑏

𝑥𝑗

;  𝑎3,𝑏 =

𝑧𝑘,𝑙
𝑏 − 𝑧𝑖,𝑙

𝑏 −
𝑧𝑗,𝑙

𝑏 − 𝑧𝑖,𝑙
𝑏

𝑥𝑗
𝑥𝑘

𝑦𝑘

. 

 

The expression under the integral sign in the formula (5) represents the matrix of 9 × 9 

order. We denote this matrix as follows: 

R = Bb
T ∑ (Csl

zl,t
3 −zl,b

3

3
) Bb. 

The expression for the matrix Kbtakes the following form: 

Kb = [Ab
−1]T ∫R

F

dfAb
−1 (12) 

The calculation of the matrixKb in general form is difficult, so the integral ∫ R
F

dfis found 

by numerical methods. 

The triangular element considered above has well-known drawbacks (see, for example, 

[16]). But on its basis improved elements of both triangular and quadrangular shape are 

obtained. 

The improved triangular element is formed by averaging of the characteristics of the three 

sub-triangles described above. The local coordinate system is introduced for each of the sub-

triangles, as shown in Fig. 3. 

 

Fig. 3. Improved triangle element: a) given triangle, b) sub-triangles. 

а)  
b)  

y y y y 

x x x x 

3 2 1 

 

= + + 
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And initially all of the main characteristics of elements are calculated in this systems. The 

coordinate system of the first sub-triangle is taken as the local coordinate system of the 

composite triangle. Then all of the characteristics of sub-triangles are converted to the axes 

of the first one by standard transformations. For example, the stiffness matrix of a composite 

triangle is found by the formula 

K = (K1 + L2
TK2L2 + L3

TK3L3)/3 
 

where K1, K2and K3 are the stiffness matrices of sub-triangles 1, 2 and 3 in their local axes; 

L2 and L3- matrixes of the direction cosines of the axes x2y2and x3y3 in the axesxy, 

respectively. 

Similarly, other characteristics are found and averaged. 

To obtain the stiffness matrix of a quadrilateral finite element, we use the technique of 

[24].  We divide the quadrilateral (not necessarily rectangular) finite element into triangles, 

as shown in Fig.5. 

 
 

1 2 

3 

4 

5 
= + 

    

i  i  

i  

i  
j  

j  

j  

j  

k  

k  k  

k  

 1  

 2  

 4  
 3  

1 
2 

3 

4 

x 

5 

5 

5 

5 

y 

1x  

1y  

2x  

2y  

3x  
4y  

3y  
4x  

 

Fig. 5. Quadrilateral finite element. 

The stiffness matrix of a quadrilateral element in its local axes is found by averaging of 

the stiffness matrices of the triangles reduced to these axes, according to the formula: 

Kx−y = (K1x−y
+ K2x−y

+ K3x−y
+ K4x−y

)/4 

The stiffness matrices of the triangles in their local axes are found by the formula (1), and 

the transition to the local axes of the quadrilateral is carried out by the standard 

transformation: 

Kmx−y
= Lm

T KmLm,  m = 1,2,3,4 

where Kmxy
−the stiffness matrix of the m-th triangle in the local axes of the quadrilateral, 

Km − the stiffness matrix of the m-th triangle in its local axes, Lm −  the matrix of the 

direction cosines of the local axes of the m-th triangle in the local axes of the quadrilateral. 

3 Results 

To verify the accuracy of the developed family of elements, a number of test problems were 

solved. Two of them are listed below. 

Task 1. Cantilever plate of variable thickness, elongated in one direction, was calculated. 

The dimensions of the plate are shown in Fig.6. 
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12 m 
2 m 

10 sm 

34 sm 

Р=20 kN 

 
Fig. 6. Cantilever plate. 

Two variants of calculation schemes were used with a grid of nodes4 × 4 and4 × 12. 

Figure 7 shows the stresses in the finite elements on the upper surface of the plate for the 

second variant. The calculation results are summarized in Table 1 (the stresses on the plate 

surface were averaged over a series of elements with the same “y” coordinate). The analytical 

solution is obtained by the strength of materials methods with a modulus of elasticity𝐸 =
3,2 × 107 kPa. 

The error in determining of the displacements with a grid of nodes4 × 4 was equal to 

2,38%, and with the grid of nodes 4 × 12- to 0.79%. The maximum error in the 

determination of stresses with a grid of nodes4 × 4 is equal to 9,8%, with a grid 4 × 12 - 

0.85%. The resulting error is quite acceptable for engineering calculations. 

 

Fig. 7. Stresses on the top surface with a grid. 

Table 1. Comparative analysis of the results. 

y(m) Grid 4 × 4 Grid 4 × 12 Analytical solution 

𝑀𝑦 

(Nm) 

𝜎𝑦 

(kPa) 

𝑤 

(sm) 

 

 

𝑀𝑦 

(Nm) 

𝜎𝑦 

(kPa) 

𝑤 (sm) 

 

𝑀𝑦 

(Nm) 

𝜎𝑦 

(kPa) 

𝑤  

(sm) 

 

1,5 207 6460  210 6535  210 6556  

4,5 147,7 7090  148,8 7185  150 7200  

7,5 88,2 7325  89,8 7460  90 7479  

10,5 27,0 4800  29,8 5280  30 5325  

12,0   0.123   0.125   0.126 
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Task 2. A plate of triangular shape, having dimensions and loaded, as shown in Fig. 8, 

was calculated. The material used was concrete with the following characteristics: 𝐸 = 3,2 ×
107 kPa;𝜈 = 0,2. The plate was clamped on the left side. 

The calculation scheme of the finite element method is shown in Fig.9, and the stresses 

on the upper surface are shown in Fig.10. Stresses were drawn at the center of gravity of each 

triangular element. 

 

60 

6000 

4000 

80 

80 

Р=10 kN 

x  

z  

y  

1y  

1x  

1( )h x  

1( )b x  

  

Fig. 8. Cantilever plate. 

 

Fig. 9. Calculation scheme of the plate. 

 

Fig. 10. Stresses on the top surface of the plate. 

  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201991091 (

TPACEE-2018
20 2013 13

7



To assess the accuracy of the developed element, an analytical calculation was made 

using the beam theory. The slab was considered as a beam of variable stiffness. 

Displacements were determined from the differential equation 

𝐸𝐼(𝑥1)𝑦1
″ = 𝑃𝑥1, (a) 

which was formulated in axes 𝑥1𝑦1 (see fig. 8). The moment of inertia of the cross-section 

was determined by the formula 

𝐼(𝑥1)1 =
𝑏(𝑥1)ℎ

3(𝑥1)

12
. 

 

At the given dimensions of the slab, the maximum displacement found from equation (a) 

was equal to 0.2637 m. The maximum displacement in the finite element analysis of plate is 

0.267 m. The difference in the maximum displacement was 1.25%. 

The analytical values of the stresses were assumed to be uniformly distributed over the 

width of the section and were calculated by the formula 

𝜎
𝑀(𝑥1)

𝑊(𝑥1)

6𝑀(𝑥1)

𝑏(𝑥1)ℎ
2(𝑥1)

𝑦,𝑚𝑎𝑥

 (b) 

The average stress value𝜎𝑦 in the centers of gravity of a number of elements adjacent to 

the embedding, obtained by   finite element method, was 14766 kPa. The value of 14461 kPa 

was found by the formula (b). The discrepancy was 2.1%. The stress at the center of gravity 

of the element adjacent to the wedge apex, calculated by finite element method, is 23200 kPa. 

The value  𝜎𝑦,𝑚𝑎𝑥  kPa was found in this section by the formula (b). The difference in stresses 

in this section is 0.93%. 

Thus, the developed element provides acceptable accuracy of the results both in 

displacements and in stresses. As an illustration of the capabilities of the program PRINS in 

the design of structures, we consider the calculation of a cantilever plate for a uniformly 

distributed load and its own weight. 

The plate was calculated in two versions. In the first variant, the plate thickness was taken 

constant, in the second - variable. The dimensions of the plates are shown in Fig.11 and 12. 

The calculation was carried out in a linear formulation with the following input data: 

heavy concrete of class B40 with the initial module𝐸 = 33200 MPa, Poisson’s ratio𝜇 = 0.2, 

weight density 𝛾 = 25 kN/𝑚3 and tensile ultimate strength 𝑅𝑏𝑡 = 1,4 MPa. The plates were 

reinforced in the stretched zone by A400 class reinforcement with a cross-sectional area equal 

to 62,8 sm2/𝑚. The intensity of the load was taken equal to 1 кPa. 

For both options, the same calculation scheme was used (see Fig. 13). 

 

Fig. 11. The plate of the constant            Fig. 12. The plate of the variable thickness. 

3 m 

1 m 

h=0,4m 3 m 

1 m 

h1=0,1m 

h2=0,25m 
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Fig. 13. Calculation scheme of the plate. 

The results of the calculations are presented in Fig.14 - 15. 

 

Fig. 14. Stresses on the upper surface of the plate of constant cross-section (kPa). 

 

Fig. 15. Stresses on the upper surface of a plate of variable cross-section (kPa). 
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4 Discussion 

As can be seen from Fig.14 and Fig.15, both calculated plates give almost the same stress 

values on the stretched surface in the rigid support: 𝜎 kPaх,𝑚𝑎𝑥in the case of a plate of 

constant cross-section and 𝜎 kPaх,𝑚𝑎𝑥in the case of a plate of variable cross-section. 

Therefore, the compared plates provide the same strength. However, the volume of a slab of 

variable cross-section is much smaller. With the accepted dimensions, the volume of the slab 

of constant cross-section is 𝑉𝑐𝑜𝑛𝑠𝑡 = 1,2 m3, and the volume of the slab of variable cross-

section is 𝑉 m3
𝑣𝑎𝑟 . Thus, the replacement of a slab of constant cross-section with a slab of 

variable cross-section provides in this case more than twice the savings of concrete. 

As for deformations of the plates, the maximum deflection in the case of a plate of 

constant cross-section was equal to 𝑤𝑚𝑎𝑥, 𝑐𝑜𝑛𝑠𝑡 = 0,511 mm, and in the case of a plate of 

variable cross-section 𝑤 mm𝑚𝑎𝑥,𝑣𝑎𝑟, i.e. a bit more. However, in the latter case, the 

maximum deflection is 1/2381 of cantilever length, equal to 3 m, which is much less than the 

norms adopted in construction. 

On the basis of the calculations performed, it can be concluded that the program PRINS 

may be useful in the design and calculation of structures containing plates of variable 

thickness. 
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