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NONLINEAR ANALYSIS OF SOLID REINFORCED
CONCRETE STRUCTURES WITH CRACKS
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Abstract: A finite element method, as well as the algorithm and the program for solid reinforced concrete
structures analysis have been developed, taking into account plastic deformations of concrete. A modified
Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric
deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic
model. An ecight-node solid finite element with linear approximation of displacement functions, which
implements the deformation models above mentioned, is constructed. This finite element is adapted to the
PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of
building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe
to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into
account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test
calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results
with experimental data confirmed the high accuracy and reliability of the results obtained.

Keywords: finite element method, PRINS computational program, building structures, solid reinforced concrete
structures, physical nonlinearity, plasticity, flow theory, structural mechanics
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AnHoTanusi: Paspabotan 0OBEMHBIH BOCHMMY3JIOBOH KOHEUHBIM DSJIEMEHT JJI1 pacdeTa MAaCCHBHBIX
JKeJ1€300€TOHHBIX KOHCTPYKLIMH ¢ ydeToM TpemuHooOpa3oBaHus. IIpu mocTpoeHHu 3ieMeHTa B 00JacTH
HaIpPsDKEHHOTO COCTOSIHUS «CXKaTHE — CXKAaTHEe — CXKAaTHe» HUCIOJb30BaH MOAUGUIUPOBAHHBIN KpUTepuit
npouyHoctu Bumiama — Bapuke. HanpsbkeHHOe cocTosiHUE O€TOHA IMPU BO3HUKHOBEHMM TPELIUHBI B PEXKHUME
«CXKaTUe — CXKaTHE» PacCMaTPUBAJIOCh KaK IUIOCKOHANPSXKEHHOE U HCHOJB30BajiCs MOAU(DHUIMPOBAHHBIN
kputepuii npounoctu Museca — I['ybepa. [loBeneHue 6eToHa NIPU PACTHKEHUH IPUHUMAIOCH TUHEHHBIM BILJIOThH
JI0 BO3HHMKHOBEHMs TpeLIuHbl. Pa3paOoTaHHBII KOHEUHBIH 53JIEMEHT aJalTHUPOBAaH K BBIYUCIUTEIBHOMY
koMmiuiekcy ITPMHC u B cocTaBe 3TOro KOMILIEKCA MOXKET OBITh MCIIOIb30BAaH HMHMKEHEPAMU NPOEKTHBIX U
HAyuYHbIX OpraHU3alUi JJI1 I[PAKTUYECKUX PAacuETOB MACCHUBHBIX JK€I€300€TOHHBIX KOHCTpyKuUui. s
BepuuUKalUU Ppa3pabOTaHHOIO KOHEYHOIO JJIEMEHTa IIPOBEJleHAa Cepusi TECTOBBIX pacyeToB OalKH,
HaxoJsllelcs B yCJI0BUM 4yuCcTOro u3ruba. CpaBHeHUE pe3ysnbTaToOB pacyeTa ¢ 3KCIEPUMEHTaIbHBIMU JaHHBIMU
MOATBEPAMIIO BBICOKYIO TOUHOCTb U JIOCTOBEPHOCTH I1OJIy4EHHBIX PE3YJILTATOB.

KiroueBble c10Ba: METOJ KOHEYHBIX dJIEMEHTOB, BRIAuCIUTEIbHBIN kKomIieke [IPUHC, crponTtensabie
KOHCTPYKIIMH, MACCUBHBIC JKeJIe300CTOHHBIC COOPYIKCHHS, PU3HUCCKasi HEITMHEHHOCTb, INIACTUYHOCTh, TCOPHS
TCUCHMA, MCXaHUKa zle(bopanyeme TEJI
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INTRODUCTION

Modern building codes and regulations adopted
in our country and abroad prescribe to carry out
calculations of reinforced concrete structures in
a nonlinear setting, taking into account the real
properties of concrete and reinforcement. At the
same time, the nonlinear deformation of
concrete, taking into account real elastoplastic
properties under the conditions of a volumetric
stress state, was studied throughout the 20th
century by both domestic and foreign scientists.

The  prerequisites  for the  successful
implementation of such calculations were
created by the development of computer
technology, on the one hand, and the
development of numerical methods of structural
mechanics, primarily the finite element method,
on the other [1,2,3,4,5].

Nonlinear methods for calculating structures are
implemented in a number of computer
programs, such as NASTRAN [6], ANSYS [7],
ABAQUS [8], ADINA [9], DIANA [10] and
others. Common to all these programs is the use
of algorithms based on the execution of step
procedures.

However, it should be noted that the
calculations of physically nonlinear structures in
the above programs are performed using
physical relationships based on certain
experimental data. In this case, the obtained
nonlinear equations for the structure as a whole
are solved by approximate methods. To increase
the reliability of the results, such calculations
should be carried out using several programs.
Therefore, engineers should have several
available calculation tools in their arsenal. In
this regard, the development of alternative
computational methods and corresponding
programs is still an urgent task.

MATERIALS AND METHODS

As is known, the system of nonlinear algebraic
equations is solved by the Newton-Raphson
method in full or modified form. The
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equilibrium equations at the loading step are
written as:

K'Au, =P, -F", (1)

where K, is the tangential stiffness matrix,
Auf',. is the vector of nodal displacements, P; is

the vector of nodal loads, Fj“l 1s the vector of

nodal concentrated forces equivalent to element
stresses, j is the step number, i is the iteration

number.

A feature of the Newton-Raphson method for
solving equation (1) is the calculation and
factorization of the tangent stiffness matrix at each
iteration. In the case of large-order systems, such
calculations can be quite expensive.

When using the modified Newton-Raphson
method, the stiffness matrix is calculated and
factorized only once at the beginning of the step
[4,5]. This simplifies the calculations, but
requires more iterations to achieve the specified
accuracy. Therefore, to accelerate convergence,
different approaches are used based on the
correction of the displacement vector at the
current iteration [11,12,13].

In the PRINS computer application, the
calculation of physically nonlinear structures by
the finite element method is carried out in
increments according to the equation [1]:

(K, +AK)Au = AP, )

where AK = %(K1 —KO) .

Stiffness matrices K, and K, are calculated at

the beginning and at the end of the loading step.

Equation (2) is solved by the iterative method:
K,Au, =AP - AK, Au,,, (3)

where i is the iteration number.

Upon reaching the convergence of the iterative

process, the full values of displacements and
stresses are found using the formulas:
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u=u,+Au, o6=0,+Ac. 4)
In general, stress increments are determined by
the formula

Ac=C,Ag, %)

where C,, is the elastoplastic matrix of material

characteristics.

At each loading step, the stress state is analyzed
and, in the event of plastic deformations and
cracks, the stresses are corrected taking into
account the accepted material deformation
diagrams. This requires a structural balancing
process. Equilibrium iterations are performed
according to formula (1), which is modified to
the form:

K Au, =P —F. (6)

The difference between formulas (1) and (6) is
that in formula (1) the stiffness matrix changes
from iteration to iteration (meaning equilibrium
iteration), and in formula (6) it does not change,
and is taken equal to the stiffness matrix, found
at the end of the step during iterations according
to formula (3).

Thus, in formula (3) the stiffness matrix is
iterated, and according to formula (6) is iterated
the vector of nodal forces, which is equivalent
to internal stresses.

The stiffness matrix for a single finite element is

found by the formula [2]:
K= j B'C,BaV, (7)
vV
where B is the matrix relating the strain

components of the element to the nodal
displacement components (geometric matrix),
C, is the matrix relating the stress components
to the strain components (physical matrix).

The technique for calculating a geometric
matrix is well known (see, for example, [3]).

e
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THE MAIN PREREQUISITES FOR THE
ANALYSIS OF THE VOLUMETRIC
STRESS STATE

Four types of stress state are considered:
compression — compression — compression,
compression — compression — tension,
compression — tension — tension, tension —
tension — tension.

The following types of material behavior are
taken into account: loading, unloading and
reloading. The deformation paths of the material
corresponding to the indicated types of behavior
are shown in figs. 1.
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Figure 1. Material Deformation Path

Loading of tensile concrete after the formation
of a crack (path C — D — E) occurs with the
modulus of elasticity

E =—2o—, ®)

where ¢, is the ultimate strain of concrete with
cracks in tension and &, is the cracking strain,
respectively (Fig. 1).

Unloading and reloading of concrete with

cracks (path D — O) occur according to a linear
law with a fictitious modulus of elasticity
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E :LM

b gcr < gD < gm (9)

Ep  Ey—Eu

The stress in tensile concrete after the
occurrence of a crack is found by the formula

8’”—80
O=0,—,

Ep —Epr

(10)

which is easily obtained from the similarity of
the triangles in fig. 1.

Deformation of concrete in the «compression —
compression — compression» mode
When constructing a physical matrix, an elastic

5 7,

\5 7e

Figure 3. Tension and compression meridians of

model was adopted for brittle fracture of fracture surface (R, and R,, — ultimate strength

concrete in the «compression — compression —
compression» mode. The behavior of concrete is
considered to be linearly elastic until reaching
the fracture surface.

The five-parameter model proposed by Willam
& Warnke [14] was adopted as the fracture
surface. On fig. 2 shows the deviatoric section
of this surface, and in fig. 3 shows the main
meridians of tension and compression.

Figure 2. Deviatoric section of the fracture
surface (v, and r, — the meridians of tension

and compression, 6 — the angle of the type of
the stress state)
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of concrete for axial compression and tension,
R,. — ultimate strength of concrete for uniform

biaxial compression, r = \/grm, E= \/gam )

The failure criterion is determined by the
formula [14]:

f(6)=f(6m,fm,9)=ﬁ%—l=0, (11)

where o, and 7, are the average values of

normal and shear stresses in the vicinity of the
point, @ is the angle of the stress state, and

_ r
r(O'm,H) \/gRb
point on the fracture surface in the deviator
section (fig. 2).

The radius-vector 7(o,,6) is determined by
the formula [14]:

is the radius-vector of the

7(0,,) 21;(1;2—;;2)0086’+4(2;;—;;)‘P
7(o,,0)=
4(1;2 —r,z)cos2 0+(r, —21;)2

(12)

where ¥ = \/4(n,2 —r,z)cos2 O+5r" —4rr. .
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The radius-vectors 7, and 7. (fig. 2) define the
meridians of tensile (6=0) and compression
(0=x/3). In the Willam & Warnke model

these meridians are square parabolas:

Tmt Gm O-m ’
R, R, [ij
2
T, . O O
= =by+ b=+ b | =2 | . 13
Rb 0 le 2[ij ( )

The coefficients a,, a,, a, and b,, b,, b, arc

obtained on the basis of experimental data for
specific concrete grades (table 1).

2- 4o, [2-
ay=—R,.a,——R, a, +,|—R,.,
0 3 bc™1 9 bc™2 15 be

l,.— = R, —R,
chz—@RM—RMyQ+J§—£L—£;,
3 52R, +R,
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6—, — _
\/ggt(Rbt _Rbc
az -

)—\Eﬁbﬁbﬁf,(zﬁ,,ﬁm,)

(2R, +R,)A
2 _

- 22— — 1= =
A=E"-ZR,E+=R,E—=R,R,.,
é: 3bc§ 3b§ 9bb

and

by ==pb - p’b,, b, =(5 +%]b2 +

rc(p-l_
b —

[REL

, =

o]

(14)

£
5

32 -1

(15)

Table 1. To the determination of the parameters of the Willam & Warnke model

Type of stress state Criterion Stresses Angle 0
1. | Uniaxial compression Ry o3=—R,, 0y=0,=0 0
2. | Uniaxial tension Ry, o1=Ry,, 0y=03=0, 0
- R
Ry, = b
Ry
3. |Uniform biaxial compression Ry, 0y=0y=-Ry,., 0
O3 = 0 ,
~ R,
Ry, =—%=1,2
be Rb
4. |Triaxial compression in high compression| o, < | o #0, 0,#0, 03#0, 0
mode R___g” E _367% 7 —159%
b &=3,67%,7 =159
(03 <01 =07, 0=0) g>0,
Tm _ -
Ry
5. |Triaxial compression in low compression| o, _ E 01#20, 0y %20, 03 %20, z/3
mode R, | = _ % — 1 oA
b £ =367% 7.=19
(O'3>O'1:O'2,9:7Z'/3) 5_2>0’
Im _7

~v n o~
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Deformation of concrete in the modes
«compression — compression — tensiony,
«compression — tension — tension» and
«tension - tension — tensiony (taking into
account cracking)

The physical matrix for concrete with one, two
and three cracks is formed as follows.

When one crack is formed the stress state of
concrete in two other directions is considered as
plane stressed and, in this case, the modified von
Mises — Huber strength criterion is used [29].
Initially, the stresses in the finite element are
calculated in the global axes of the structure x — y
— z. At the moment the first crack occurs the
position of the main axes 1 —2 — 3 is fixed (fig. 4).

Figure 4. Analysis of the stress state of
concrete during the formation of one crack

When the first crack occurs the material in the
volume of the element breaks up, according to
the accepted hypothesis, into a number of plane
stressed plates. In each such plate there are such
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areas with normals 2' and 3', on which the
normal stresses have extreme values. Further
analysis of cracking is carried out according to
the principal stresses and acting along axes 2!
and 3! (fig. 4). These stresses, as well as the
angle of rotation of axes 2' and 3' relative to
axes 2 and 3 are found according to the general
rules for the strength of materials. Further
calculation of the structure is performed in axes
1 — 2! — 3! for which the matrix of direction
cosines of these axes is preliminarily calculated
in the global axes x —y —z.

In the presence of two cracks the module of
elasticity of concrete in the third direction is
determined by the «stress-strain» diagram for a
uniaxial stress state, and the shear modules are
taken according to the recommendations given
in [1].

In this case, the physical matrix is calculated as
follows:

00 0 0 0 0
00 0 0 0 0
0O 0 E 0 0 0
C. = , (16)
00 0 G, 0 0
0 0 0 0 <0
0o 0 0 0 0 < |

In the presence of three cracks the modulus of
elasticity is zero.

The modulus E in matrix (16) is taken equal to
either the initial modulus if the concrete is
tensiled in the third main direction, or the
tangent modulus of the stress-strain curve if the
concrete is compressed in the third main
direction.

Experiments show that cracked concrete with
reinforcement transmits significant shear stresses.
In this case, the magnitude of shear stiffness is
influenced by such factors as the width of the
crack opening, the coefficient of reinforcement,
the diameter of the reinforcement, the structure of
concrete, etc. [28]. Following the
recommendations of [28], we take the shear
modulus as a function of the current tensile strain.
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For concrete with a crack in the first principal
direction

G, =0,25G|1-—3 |,
0,004
G, =0 if g >0,004, (17)
G;, =Gy,
where G is the shear modulus of concrete

without cracks, ¢ 1is the tensile strain in the

main direction 1.
For concrete with a crack in two directions:

&
0,004 )’

G4 =0 if & >0,004,

GS =0,25G] 1-—22 |,
0,004

G, =0 if & > 0,004,

G4, =0, 25G(1—

(18)

G, = %min[Gﬁ, G5 .

For concrete with a crack in three directions:

Vladimir P. Agapov, Alexey S. Markovich

G2=0,25G(1— & ] (19)

0,004
G, =0 if & > 0,004,

G, =0,25G|1-—2— |,
0,004

G, =0 if & > 0,004,

c c c 1 .
G, =Gy =Gy :Emln[G1aG29G3]-

Based on the above algorithm, a program
adapted to the PRINS computer application was
developed.

RESEARCH RESULTS

To test the developed finite element, the results
of experiments by Obernikhin D.V. and Nikulin
A.l. were used from the article [26], in which
the strength and crack resistance of reinforced
concrete beams were studied.

Beam material — class B22.5 concrete. The
beam had double longitudinal reinforcement
with A500 @12 and A240 8 mm rebar,
respectively. The transverse reinforcement is
reinforcement class Bp500 @5 mm (Fig. 5).

G, =0,25G| 1-—9 |,
0,004
G, =0 if & > 0,004,
1/211 ‘/711
g
7, #7120
| 400 ’ 300 ‘ 400 |
s0) | 1100 | |s0
1200
@12A500 @8 A240
@5 Bp500 J 81:] §|‘
35 | 50x6-300 100x5=500 50x6=300| |35

Figure 5. Geometric dimensions and reinforcement scheme of beams
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The finite element model of the experimental
beam consisted of 2016 three-dimensional
eight-node  elements (fig. 6). Beam
reinforcement was modeled by one-dimensional
bar elements with three degrees of freedom at
the node. For longitudinal reinforcement the
hypothesis of ideal elastoplastic behavior was
accepted and the influence of the squares of
rotation angles on longitudinal forces was taken
into account. The transverse reinforcement rods

were under conditions of linear elastic
deformation.

The loading and fixing conditions of the beam
corresponded to the methodology carried out by
Obernikhin D.V. and Nikulin A.l. experiments
[26].

It should be noted that earlier similar problems
were considered by Rimshin V.I. and Amelin
P.A. in [27] wusing the foreign complex

ABAQUS.

b)

Figure 6. FE scheme of the experimental beam: a — FE model of the «body» of the beam, b — bar
FE scheme of reinforcement

The total load on the beam was taken equal to P
= 48 kN. The calculations were performed by
the step-iterative method. 41 loading steps were
set, the coefficient to the load at the first step
was taken equal to 0.01, and at the remaining
steps — 0.03.

According to the calculation results, the process
of crack formation in concrete, beam
displacements at fixed load values, as well as
the ultimate (failure) load were researched.

The calculation results are presented in table 2.

Table 2. Beam calculation results

Average displacements of beams | Average cracking :
Average failure
Analyzed value (mm) under load, kN load, load. kN
16 24 32 kN st
Experimental results [26] 1,76 3,23 4,90 6.41 40,218
Calculation results in the
PRINS computer 1,63 2,98 4,82 6,24 39,36
application
Divergence, % 7,98 8,39 1,66 2,72 2,18

As can be seen from table. 2, the divergences in
the values of the ultimate (failure) load,
obtained from the results of calculations in the

Volume 19, Issue 4, 2023

PRINS computer program, in comparison with
the experimental data [26] does not exceed
2.18%, which indicates the high accuracy of the
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is shown in Fig. 7.

calculation

developed finite element, as well as reliability The process of cracking of the considered beam
stability used nonlinear

and

algorithms.

Step number: 17

Step number: 12

Step number: 25

Step number: 23

Figure 7. Cracking of the considered beam

The beam displacements corresponding to the total load of 16 kN and 32 kN are shown in fig. 8.

Figure 8. Beam displacements (m).: a — at a load of 16 kN, b — at a load of 32 kN

for calculating massive reinforced concrete

CONCLUSION

structures, which makes it possible to take into

account the brittle fracture of concrete in the

The authors have developed and implemented a
physically nonlinear volumetric finite element

compression mode and the process of cracking
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in tensile concrete. When creating an element to
take into account the work of concrete in the
«compression — compression — compressiony
mode, the Willam & Warnke failure criterion
was used.

When a crack occurs in concrete in the first
main direction, the stress state of concrete in the
other two directions (in the «tension -—
compression — compression» mode) s
considered as plane-stressed and the modified
von Mises — Huber failure criterion is used.

In the presence of two cracks, the modulus of
elasticity of concrete in the third direction is
determined by a simple stress-strain diagram,
and, at the same time, the influence of shear
stresses on the work of concrete with cracks is
taken into account.

Since the reinforcement of the structure can be
performed arbitrarily, its features can be fully
taken into account by including one-
dimensional bar elements characterizing the
reinforcement in the finite element diagram of
the structure. In this case, for reinforcing steel, it
is possible to set both elastic and elastic-plastic
deformation models.

To verify the created finite element, a series of
test calculations of the beam, which is in the
condition of a four-point bending (pure
bending), was carried out. The subsequent
comparison of the calculation results with the
experimental data confirmed the high accuracy
and reliability of the results obtained.

This finite element is adapted to the PRINS
computer application and, as part of this
software application, can be used by engineers
of design and scientific organizations for
practical calculations of reinforced concrete
structures.

Thus, the PRINS software application can be
successfully used to solve a large class of
engineering problems [23,24,25].
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