30 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Hormones, microgaravité simulée et l'hypergravité affecte l'os et d'autres systèmes physiologique dans les larves de zebrafish

    Full text link
    Zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Understanding the consequences of altered gravity on bone development and on general physiology in an entire organism remains to date incomplete. We used altered drug treatment and gravity experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. We started treatments at 5 days post-fertilization (dpf) and analyze early modifications in gene expression after 1 day using microarrays and the consequences on bone formation after 5 days using specific staining. We performed chemical treatments (Parathyroid Hormone, Vitamin D3), exposure to three different microgravity simulation devices (Clinostat, Random Positioning Machine and Rotating Wall Vessel) and finally exposure to hypergravity and "relative microgravity" in the Large Diameter Centrifuge. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton, and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10dpf) with, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. The microgravity simulators used were the 2D clinostat, random positioning machine and rotating wall vessel. Only clinorotation caused a significant decrease of bone formation when applied between 5 to 10dpf. This effect was not due to stress, as assessed by measuring cortisol levels in treated larvae. The two other devices caused no effect, or a slight acceleration of ossification. Gene expression results after one day in simulated microgravity indicate that musculo-skeletal, cardiavascular, and nuclear receptor systems are affected, however often in opposite directions in clinorotation compared to the two other devices. Based on the effects on bone formation and on the biological functions found to be affected, we conclude that clinorotation is the most appropriate method to simulate microgravity on ground when using free-swimming organisms such as zebrafish larvae. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity

    Zebrafish Skeleton Measurements using Image Analysis and Machine Learning Methods

    Full text link
    The zebrafish is a model organism for biological studies on development and gene function. Our work aims at automating the detection of the cartilage skeleton and measuring several distances and angles to quantify its development following different experimental conditions

    THE FUNCTION OF HMG-BOX TRANSCRIPTION FACTORS Sox4a AND Sox4b IN ZEBRAFISH BONE DEVELOPMENT AND HOMEOSTASIS.

    Full text link
    In mammals, the Sox4 gene is involved in development of endocardial crests, the brain, the lung, teeth, gonads and lymphocytes. Recently, Sox4 was shown to control bone mass and mineralization in mice. In zebrafish, two homologs for the mammalian Sox4 are present, sox4a and sox4b. Here we investigate the function of the sox4a and sox4b genes in cartilage and bone development in zebrafish. Therefore, we focus our attention on the first bone structures to be formed, the head skeleton and more precisely the pharyngeal cartilage. We show that both genes are expressed in the pharyngeal region, albeit at different time points during development. Double in situ hybridization experiments are used to exactly define the particular tissues where they are expressed. Furthermore, microinjection experiments of antisense oligonucleotides are used to block translation of these specific genes and to define their precise function during cartilage and bone development

    Effects of microgravity simulation on zebrafish transcriptomes and bone physiology; exposure starting at 5 days post-fertilization.

    Get PDF
    Physiological modifications in near weightlessness, as experienced by astronauts during space flight, have been the subject of numerous studies. Various animal models have been used on space missions or in microgravity simulation on ground to understand the effects of gravity on living animals. Here, we used the zebrafish larvae as a model to study the effect of microgravity simulation on bone formation and whole genome gene expression. To simulate microgravity (sim-mu g), we used two-dimensional (2D) clinorotation starting at 5 days post fertilization to assess skeletal formation after 5 days of treatment. To assess early, regulatory effects on gene expression, a single day clinorotation was performed. Clinorotation for 5 days caused a significant decrease of bone formation, as shown by staining for cartilage and bone structures. This effect was not due to stress, as assessed by measuring cortisol levels in treated larvae. Gene expression results indicate that 1-day simulated microgravity affected musculoskeletal, cardiovascular, and nuclear receptor systems. With free-swimming model organisms such as zebrafish larvae, the 2D clinorotation setup appears to be a very appropriate approach to sim-mu g. We provide evidence for alterations in bone formation and other important biological functions; in addition several affected genes and pathways involved in bone, muscle or cardiovascular development are identified

    Comparison of genes affected after PTH or VitD3 treatment between 5–6dpf.

    No full text
    <p>(A) List of common genes and their respective log2(fold change) in the two conditions. (B) Comparison of the number of genes affected by PTH or VitD3 treatment. The number of probes resulting in different hybridization signals is given, with the numbers in parenthesis and the graph showing the numbers of IPA-annotated genes. (C) Network constructed using the common genes and extended using the genes affected in one of the two conditions. The color overlay indicates the fold change after VitD3 (left) or PTH (right) treatment. Genes up-regulated (red), down-regulated (green), (*) indicates that the gene is represented by two or more probes on the microarray.</p
    corecore