11 research outputs found

    I-FENN for thermoelasticity based on physics-informed temporal convolutional network (PI-TCN)

    Full text link
    We propose an integrated finite element neural network (I-FENN) framework to expedite the solution of coupled multiphysics problems. A physics-informed temporal convolutional network (PI-TCN) is embedded within the finite element framework to leverage the fast inference of neural networks (NNs). The PI-TCN model captures some of the fields in the multiphysics problem, and their derivatives are calculated via automatic differentiation available in most machine learning platforms. The other fields of interest are computed using the finite element method. We introduce I-FENN for the solution of transient thermoelasticity, where the thermo-mechanical fields are fully coupled. We establish a framework that computationally decouples the energy equation from the linear momentum equation. We first develop a PI-TCN model to predict the temperature field based on the energy equation and available strain data. The PI-TCN model is integrated into the finite element framework, where the PI-TCN output (temperature) is used to introduce the temperature effect to the linear momentum equation. The finite element problem is solved using the implicit Euler time discretization scheme, resulting in a computational cost comparable to that of a weakly-coupled thermoelasticity problem but with the ability to solve fully-coupled problems. Finally, we demonstrate the computational efficiency and generalization capability of I-FENN in thermoelasticity through several numerical examples

    Enhanced physics-informed neural networks for hyperelasticity

    Full text link
    Physics-informed neural networks have gained growing interest. Specifically, they are used to solve partial differential equations governing several physical phenomena. However, physics-informed neural network models suffer from several issues and can fail to provide accurate solutions in many scenarios. We discuss a few of these challenges and the techniques, such as the use of Fourier transform, that can be used to resolve these issues. This paper proposes and develops a physics-informed neural network model that combines the residuals of the strong form and the potential energy, yielding many loss terms contributing to the definition of the loss function to be minimized. Hence, we propose using the coefficient of variation weighting scheme to dynamically and adaptively assign the weight for each loss term in the loss function. The developed PINN model is standalone and meshfree. In other words, it can accurately capture the mechanical response without requiring any labeled data. Although the framework can be used for many solid mechanics problems, we focus on three-dimensional (3D) hyperelasticity, where we consider two hyperelastic models. Once the model is trained, the response can be obtained almost instantly at any point in the physical domain, given its spatial coordinates. We demonstrate the framework's performance by solving different problems with various boundary conditions

    A deep learning energy method for hyperelasticity and viscoelasticity

    Full text link
    The potential energy formulation and deep learning are merged to solve partial differential equations governing the deformation in hyperelastic and viscoelastic materials. The presented deep energy method (DEM) is self-contained and meshfree. It can accurately capture the three-dimensional (3D) mechanical response without requiring any time-consuming training data generation by classical numerical methods such as the finite element method. Once the model is appropriately trained, the response can be attained almost instantly at any point in the physical domain, given its spatial coordinates. Therefore, the deep energy method is potentially a promising standalone method for solving partial differential equations describing the mechanical deformation of materials or structural systems and other physical phenomena
    corecore