25 research outputs found

    Hand Motion Detection in fNIRS Neuroimaging Data

    Get PDF
    As the number of people diagnosed with movement disorders is increasing, it becomes vital to design techniques that allow the better understanding of human brain in naturalistic settings. There are many brain imaging methods such as fMRI, SPECT, and MEG that provide the functional information of the brain. However, these techniques have some limitations including immobility, cost, and motion artifacts. One of the most emerging portable brain scanners available today is functional near-infrared spectroscopy (fNIRS). In this study, we have conducted fNIRS neuroimaging of seven healthy subjects while they were performing wrist tasks such as flipping their hand with the periods of rest (no movement). Different models of support vector machine is applied to these fNIRS neuroimaging data and the results show that we could classify the action and rest periods with the accuracy of over 80% for the fNIRS data of individual participants. Our results are promising and suggest that the presented classification method for fNIRS could further be applied to real-time applications such as brain computer interfacing (BCI), and into the future steps of this research to record brain activity from fNIRS and EEG, and fuse them with the body motion sensors to correlate the activities

    Bivariate Autoregressive State-Space Modeling of Psychophysiological Time Series Data

    Get PDF
    Heart rate (HR) and electrodermal activity (EDA) are often used as physiological measures of psychological arousal in various neuropsychology experiments. In this exploratory study, we analyze HR and EDA data collected from four participants, each with a history of suicidal tendencies, during a cognitive task known as the Paced Auditory Serial Addition Test (PASAT). A central aim of this investigation is to guide future research by assessing heterogeneity in the population of individuals with suicidal tendencies. Using a state-space modeling approach to time series analysis, we evaluate the effect of an exogenous input, i.e., the stimulus presentation rate which was increased systematically during the experimental task. Participants differed in several parameters characterizing the way in which psychological arousal was experienced during the task. Increasing the stimulus presentation rate was associated with an increase in EDA in participants 2 and 4. The effect on HR was positive for participant 2 and negative for participants 3 and 4. We discuss future directions in light of the heterogeneity in the population indicated by these findings

    A Newcomer\u27s Guide to Functional Near Infrared Spectroscopy Experiments

    Get PDF
    This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs

    EchoWear: Smartwatch Technology for Voice and Speech Treatments of Patients with Parkinson’s Disease

    Get PDF
    About 90 percent of people with Parkinson\u27s disease (PD) experience decreased functional communication due to the presence of voice and speech disorders associated with dysarthria that can be characterized by monotony of pitch (or fundamental frequency), reduced loudness, irregular rate of speech, imprecise consonants, and changes in voice quality. Speech-language pathologists (SLPs) work with patients with PD to improve speech intelligibility using various intensive in-clinic speech treatments. SLPs also prescribe home exercises to enhance generalization of speech strategies outside of the treatment room. Even though speech therapies are found to be highly effective in improving vocal loudness and speech quality, patients with PD find it difficult to follow the prescribed exercise regimes outside the clinic and to continue exercises once the treatment is completed. SLPs need techniques to monitor compliance and accuracy of their patients\u27 exercises at home and in ecologically valid communication situations. We have designed EchoWear, a smartwatch-based system, to remotely monitor speech and voice exercises as prescribed by SLPs. We conducted a study of 6 individuals; three with PD and three healthy controls. To assess the performance of EchoWear technology compared with high-quality audio equipment obtained in a speech laboratory. Our preliminary analysis shows promising outcomes for using EchoWear in speech therapies for people with PD

    Emotional reactivity monitoring using electrodermal activity analysis in individuals with suicidal behaviors

    Get PDF
    Suicide, considered as one of the leading causes of death, has not been given enough attention in order to reduce it\u27s rate. The problem addressed in this paper is the analysis of the relation between an extra stimulus and physiological data\u27s responses. In order to record the physiological data set from multiple subjects over many weeks, we used an acoustic startle during a Paced Auditory Serial Addition Task (PASAT) test that spontaneously leads subjects to real emotional reactivity, without any deliberate laboratory setting. Crucially, we show that, by inducing anxiety during the test, changes appear in Electrodermal activity, Electrocardiogram, Heart Rate and Respiration Rate. A wide range of physiological features from various analysis domains, including modeling, time/frequency analysis, an algorithm and etc., is proposed in order to find the best emotional reactivity feature to correlate them with emotional states which can be considered as a suicide factor. More specifically, this paper is focused on the EDA data analysis. Experimental results highlight that all cited techniques perform well and we achieved a high resolution of tonic and phasic components which allow us to measure the latency, onsets and amplitudes of EDA responses to a stimulus. This paper follows the association of recommendations for advancement of health care instruments

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Supplemental Oxygen therapy and Non-Invasive Ventilation in Corona Virus Disease (COVID-19)

    Get PDF
    The world has experienced a pandemic due to novel Severe Acute Respiratory Disease Corona Virus-2 (SARS-CoV2) since December 2019. The clinical spectrum of the disease known as Coronavirus Disease 2019 (COVID-19) is so much wide, starting from an asymptomatic state to paucisymptomatic clinical presentation, pneumonia, respiratory failure to even death. Supplemental oxygen therapy is essential in managing COVID-19. Also, there is sparse evidence regarding use of non-invasive ventilation (NIV) in pandemics like SARS-CoV-2. This study reviews the currently available methods for respiratory support in COVID-19 with a discussion about using these modalieties in the COVID-19 pandemic

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021:a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere.FundingBill &amp; Melinda Gates Foundation.<br/
    corecore