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Abstract—About 90 percent of people with Parkinsons disease
(PD) experience decreased functional communication due to
the presence of voice and speech disorders associated with
dysarthria that can be characterized by monotony of pitch
(or fundamental frequency), reduced loudness, irregular rate
of speech, imprecise consonants, and changes in voice quality.
Speech-language pathologists (SLPs) work with patients with PD
to improve speech intelligibility using various intensive in-clinic
speech treatments. SLPs also prescribe home exercises to enhance
generalization of speech strategies outside of the treatment room.
Even though speech therapies are found to be highly effective
in improving vocal loudness and speech quality, patients with
PD find it difficult to follow the prescribed exercise regimes
outside the clinic and to continue exercises once the treatment
is completed. SLPs need techniques to monitor compliance and
accuracy of their patients exercises at home and in ecologically
valid communication situations. We have designed EchoWear,
a smartwatch-based system, to remotely monitor speech and
voice exercises as prescribed by SLPs. We conducted a study
of 6 individuals; three with PD and three healthy controls. To
assess the performance of EchoWear technology compared with
highquality audio equipment obtained in a speech laboratory.
Our preliminary analysis shows promising outcomes for using
EchoWear in speech therapies for people with PD.

Keywords- Dysarthria; knowledge-based speech processing;
Parkinsons disease; smartwatch; speech therapy; wearable sys-
tem.

I. INTRODUCTION

Parkinson disease (PD) is the second most common neu-
rodegenerative disorder of mid-to-late life in developing and
developed countries [1]. Approximately 4 million people
worldwide were diagnosed with PD in 2005 and that number
projected to go beyond 9 million by 2030 [2]. The character-
istic motor disorder that defines PD includes rigidity, slow-
ness of movement (bradykinesia), and hypokinesia. Speech
problems are common in people with PD and it has been
estimated that 70-90of patients reported speech impairments
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Fig. 1. A concept of the EchoWear system.

after the onset of PD [3], [4]. Patients with PD experience a
combination of speech impairments including; reduced vocal
loudness [5]; a breathy or harsh voice quality [6]; imprecise
consonants and distorted vowels [7]; and reduced voice pitch
(fundamental frequency) variation [8] collectively called hy-
pokinetic dysarthria [9].

Speech treatments are effective to enhance speech intel-
ligibility, voice quality and confidence of patients with PD
to communicate [7]. However, it is challenging for patients
to maintain long-term benefits of treatment since PD pro-
gresses uniquely in each patient. Therefore, SLPs design a
personalized approach for each patient to set individual speech
goals in treatment. It is difficult for SLPs to accurately assess
whether patients adhere to the prescribed therapy at home and
in functional communication situations outside of the clinic.
Since PD may also affect cognitive abilities including memory,
patients may not remember precise details of the therapy
exercises and the recommended exercise schedule. Hence,
SLPs seek an efficient and effective solution to remotely
monitor the speech of their patients.

We have developed a smartwatch-based system,
”EchoWear” (shown in Figure 1), to collect data on
various attributes of speech exercises performed by patients
with PD outside of the clinic. In this paper, we provide results
of research conducted with patients with PD and healthy
adults to validate the performance of EchoWear to record
quality speech data. In the subsequent sections, we will
describe the architecture of EchoWear that enables recording,
processing and communication of wearers’ speech data.
In-depth comparisons between the data from EchoWear and

ar
X

iv
:1

61
2.

07
60

8v
1 

 [
cs

.C
Y

] 
 2

1 
D

ec
 2

01
6

Kunal Mankodiya


Kunal Mankodiya




audio equipment used by SLPs are discussed to demonstrate
the reliability and validity of modern smartwatch technology
for its use as a tele-recording device.

II. BACKGROUND & RELATED WORKS

A. Speech Disorders in People with PD

The symptoms of PD are associated with alterations in
basal ganglia circuitry due to decreased in dopamine in the
substantia nigra pars compacta [10]–[12]. However, the neural
mechanisms underlying the effects of dopamine loss and its
impact on speech and voice are not well understood. Physio-
logical abnormalities associated with speech and voice changes
in people with PD include reduced vocal fold adduction
and asymmetrical patterns of vocal fold vibration [13], [14];
reduced neural drive to laryngeal muscles [15]; poor reciprocal
suppression of laryngeal and respiratory muscles [16]; and
a reduction in respiratory muscle activation patterns [17] all
of which contribute to the perceptual feature of significantly
decreased loudness in people with PD. Motor speech charac-
teristics of rigidity, weakness, bradykinesia and hypokinesia
do not completely account for the speech abnormalities as-
sociated with PD. Additional non-dopaminergic mechanisms
such as sensory deficits in the internal monitoring of am-
plitude and maintaining amplitude of speech movements and
volume of speech are significant factors that also contribute to
decreased loudness, imprecise articulation, and limited pitch
variation [18]–[20].

B. Speech Therapies in PD

Speech therapy is an important element of treatment for
patients with PD. Traditional speech therapy typically involves
multiple speech system targets such as voice, rate, articulation,
and respiration [21]. For example, the Lee Silverman Voice
Treatment (LSVT LOUD) has been used as an effective ther-
apy in the short term and long term to improve speech loudness
and quality in people with PD by targeting voice [21], [22].
LSVT LOUD is intensive (4 days a week or 16 sessions in
one month) and systematic in training the vocal loudness [23].
Regardless of the specific treatment approach, patients have
to participate in treatment proactively by performing home
exercises prescribed by their SLPs [24]. Regular home exer-
cises and using speech strategies in functional communication
situations are as important as the intensive in-clinic training
given by SLPs. Acoustic analysis of diadochokinesis for
dysarthric speech was proposed and validated in [25]. The
temporal features proved to be better than energy features
for discriminating dysarthria secondary to multiple sclerosis,
dysarthria secondary to PD, and healthy controls. The authors
performed acoustic analyses based on duration and Bark-
scaled F1-F2 values of the vowels. The PD participants did
not show an effect of density on dispersion for high-frequency
words [26]. Induced variability in F2 trajectories for different
speaking rates in patients with PD and healthy controls is
discussed in [27]. It was demonstrated that speaking rate did
not have a consistent influence on F2 onset frequency for both
healthy controls and patients with PD.

C. Technologies for PD Speech Treatments

Recently, increasing numbers of SLPs have adopted tele-
health or tele-rehabilitation services involving information and
communication to enhance treatment methods [24]. Online
speech therapy or tele-practice leverages internet-connected
computers with a webcam, speakers and a microphone to
form a clinical arrangement where the patient and an SLP
can communicate faceto- face over the Internet from different
locations [28]. For example, the LSVT LOUD companion
software allows SLPs to access their patients homework and
exercises completed outside the clinic environment [29].

EchoWear leverages modern smartwatch technology that
comes with a variety of sensors, an interactive touch screen,
and an ability to exchange the data and information with
smartphones for the purpose of monitoring speech exercises
at home and in functional communication situations. The
smartwatch is used as a wearable sensor worn on the wrist
of patients to tele-monitor how they follow up with speech
therapy at home. The use of smartwatches for such tele-
monitoring applications demands the design of a reliable
architecture such as architecture of EchoWear to first validate
its performance through controlled in-clinic validation trials.

III. ECHOWEAR A WEARABLE SYSTEM FOR SPEECH
TREATMENTS

EchoWear is a wearable speech monitoring system to
leverage sensing and communication capabilities of modern
smartwatches to generate a dynamic structure of monitoring
speech exercises in patients with PD. The system architecture
of EchoWear is divided into three elements as described below.

A. Smartwatch System

The reason we call it a smartwatch system is that the
smartwatch is not a standalone device. It works in conjunction
with a smartphone or a tablet for short-range communication
to provide interplays such as extended notifications of mes-
sages and phone calls, voice command control, and physical
activity monitoring including step counting. Essentially, the
smartwatch is considered an extended part of the smartphone
system and provides opportunity for users to respond instan-
taneously to activities on their smartphones. As shown in
Figure 2, EchoWear uses the combination of a smartwatch and
a smartphone for speech therapy. PD patients wear modern
smartwatches running Android Wear OS. The smartwatch
receives a control from a nearby smartphone (tablet) signaling
the recording process. The speech data is received through the
smartwatchs built-in microphone followed by filtering to re-
move background noise using the Android API for audio. The
recording frequency is set to 44.1 kHz with 16-bit precision.
We have developed a Wearable Internet of Things (WIOT)
framework that allows Android devices to connect seamlessly
to nearby-placed wearable devices such as smartwatches [30].
Once the Android tablet initiates the recording process, the
smartwatch continuously streams the data through the use
of the Bluetooth 4.0 protocol, in conjunction with Googles
Wearable Message API. The data is sent from the smartwatch



Fig. 2. System architecture of EchoWear.

in a 2 kB package, until the recording process has been
completed. During the receiving, the data is buffered into an
output stream on the smartphones internal storage. Once the
process has completed, the RAW audio data is re-read, the
WAV header is added, and is then saved in a format compatible
with most audio players. The WIOT framework designed for
EchoWear correctly aligns itself with the standard Android
application lifecycle. To maintain compatibility and stability,
the components of WIOT are split up into key components.
As shown in Figure 3, the framework is split into an activity, a
service, WiotLib, Hermes, and finally the smartwatch. Starting
from what the user sees, the activity is the forefront of the
framework. This activity displays the data collection process,
and controls for maintaining the data. The activity directly
speaks to the service. The service is responsible for the
lifecycle management of both the activity and the collection
of APIs used for the research. WiotLib acts as a collection of
static methods to make the programming part easier, allowing
us to reuse standard code across multiple projects. Hermes,
an in-house messaging service, was designed to handle com-
munication between the service and the smartwatch. Hermes
allows the addition of multiple smartwatches, and receives a
variety of different types of data. Hermes also lets us maintain
the smartwatch lifecycle, and keep track of battery life, and
prevent the watch from entering commercial modes, such as
battery saving features. Finally, we are running a service on
the smartwatch that responds to Hermes. This service is used
to communicate with the onboard hardware, specifically the
microphone. The tablet sends the speech data obtained from
the smartwatch to the cloud server. We have a speech analysis
engine in the cloud that process the speech signal as discussed
in the next section.

B. The Cloud for Speech Analysis

The cloud stores the speech data obtained from the tablet
during speech exercises of PD participants and processes the
speech data. It has two main units, namely an analysis unit and
a visualization unit. The analysis unit computes the speech
quality metric (SQMs) and the visualization unit displays
the results on user interface. The audio files accumulated in
the cloud are analyzed by a knowledge-based clinical speech
processing chain (CLIP) to get clinically relevant metrics like
loudness and frequency. CLIP is a modular software chain with
the possibility to incorporate other clinically relevant metrics

Fig. 3. Interplay between the smartwatch and the tablet.

such as jitter, shimmer, sensory pleasantness, and dysphonia
measures.

1) Clinical Speech Processing Chain (CLIP): CLIP is a
flexible software system in the cloud that computes perceptual
speech quality metrics (SQMs). CLIP consists of several
sub-systems as shown in Figure 2. The speech signal is
pre-processed to make it suitable for acoustic analysis. The
knowledge-based speech processing block takes the processed
speech and computes SQMs based on mathematical models
of human auditory perception. The speech signals can have
two types of sounds, i.e., voiced sounds (that can be vowels
or nasal sounds) and unvoiced sounds (fricatives and plosive
sounds that are consonants). The SQMs computed in this paper
are listed in Table I. The SLPs use SQMs to monitor the
speech quality of participants and to infer if the participant has
improved by performing vocal exercises at home. The final
block in CLIP is the data-driven inference system that uses
large amounts of SQMs computed over the time to provide
automatic health reports to SLPs and/or participants. This
block is essentially a machine learning system that adapts
itself for each participant and SLP to provide personalized
speech treatment for PD. The ultimate goal of CLIP within
EchoWear is to provide a fully automated, intelligent and
flexible enhanced speech treatment for PD participants.

IV. METHOD

A. Participants

Seven participants were recruited for this study. Four par-
ticipants diagnosed with PD were recruited from the Depart-
ment of Communicative Disorders in the University of Rhode



Island. One of the PD participants withdrew from the study
because of illness. Three out of six participants were diagnosed
with PD and the time since diagnosis was from 3 years up
to 25 years. Three participants without PD served as healthy
controls. The participants S1, S2, and S3, were diagnosed with
PD and participants S4, S5 and S6 were healthy controls.

B. Protocol
The participants were asked to perform three speech tasks.

Task 1 (t1) was a vowel prolongation task, in which partici-
pants were asked to sustain the vowel ah for as long as possible
for a total of three repetitions. Task 2 (t2) and Task 3 (t3) were
developed to record high and low pitches. Participants were
asked to start saying ”ah” at their talking pitch and then go
up or down in pitch and hold it for 5 seconds and repeat it
for three repetitions. All the instructions related to each task
were shown on a screen in front of the participants and were
explained before starting each task.

C. Experimental Setup
Evaluations took place in an IAC sound-treated booth at the

University of Rhode Island Speech and Hearing Center. The
recording environment is shown in Figure 4. Each participant
was seated in a chair and wore an Android smartwatchA-
sus Zenwatch while simultaneously collecting data using au-
dio recording technology [31]. A head-mounted microphone
(model Isomax B3) was placed at a distance of 8 cm from
the mouth and even with the participants mouth. A sound
level meter (SLM; Bruel & Kjaer Type 2239) was placed
at a distance of 40 cm from the participants mouth. The
head-mounted microphone and SLM signal were digitized and
directly sent to the computer (Toshiba Qosmio). Speech was
sampled at 44 kHz using Goldwave software. Evaluations
were also recorded using a Cannon FS400 camcorder. The
participants were asked to maintain the microphone as well
as the smartwatch at the same distance from the through-
out the recording. The rectangular enclosure represents the
clinical room where experimental data were collected. The
speech signal from the mouth can follow several reflected
paths in addition to the direct path to reach the smartwatch
or the microphone. However, since the microphone and the
smartwatch were at different orientations (different positions),
the reflected path for each case was different. Accounting for
the environmental variables such as reverberation and room
impulse response was out of the scope in this validation
study. Since the recording took place in a sound treated
booth, calibration based on room impulse response was not
needed. The aim of this experiment was proof-of-concept for
the smartwatch compared with traditional speech recording
methods in a controlled acoustic environment. The speech
amplitude has shallow dependence on orientation and distance
from mouth, hence for small movements made by participants,
the deviations were insignificant as shown in Section V.

D. Proof-of-Concept Trial
We received an approval (ref no: 682871-2) from the Insti-

tutional Review Board to conduct our experiments involving

Fig. 4. Acoustic scenario for speech data collection.

Fig. 5. Speech signal and corresponding instantaneous loudness level in dB
(Phon) for participant S1 − t1 (baseline). The loudness level has a strong
dependence of amplitude as depicted here. It has shallow dependence on
frequency content and time duration of speech signal.

individuals with PD and healthy controls. Participants read and
signed the consent form at the time of data collection. All the
participants were introduced to the new technology involved
in this trial. The trials were conducted by a certified SLP at
URI. Participants had the option to terminate the ongoing trial
at any time.

V. RESULTS & DISCUSSIONS

The loudness and fundamental frequency (F0) were two
primary SQMs for assessment of speech. We will discuss
the mathematical foundations of speech processing needed
for computing these SQMs and validate the accuracy of the
smartwatch technology in terms of these SQMs with respect
to baseline microphone data. We will also discuss the practical
limitations that cause variations in SQMs computed using the
smartwatch instead of baseline microphone.



Fig. 6. Comparison of average loudness level in dB (Phon) for baseline (BL) and smartwatch (SW) speech signals (Numbers above the bars represent percent
deviation from the smartwatch data compared to the baseline).

TABLE I
LIST OF SPEECH QUALITY METRICS (SQMS)

SQM Definition
Average loudness level in dB (Phon) Average of the instantaneous loudness level in dB (Phon)
Average fundamental frequency (Hz) Average of the fundamental frequency (F0) contour

Fig. 7. Fundamental frequency contour for speech signal S1− t1 (baseline).
The first few samples of speech signal has very low amplitude (unvoiced
speech) that corresponds to very high instantaneous frequency (Hz). The
unvoiced speech does not cause perception of pitch. The instantaneous
frequency corresponding to unvoiced speech is not accounted for computation
of average fundamental frequency.

A. Speech Pre-processing

The speech signals were recorded using both a smartwatch
and a microphone. The acquired speech signal was contam-
inated with background noise, and SLPs voice so we edited

the speech signal to remove the SLPs voice (interruptions).
After editing, we use the spectral subtraction for reducing
the background noise [32]. The spectral subtraction is a
simple method for noise reduction based on the assumption
of stationary white Gaussian noise uncorrelated with the clean
speech signal. The short-time noise spectrum is computed
during the silence frames and later averaged and smoothed in
frequency domain. The magnitude of the smoothed estimates
of the short-time time noise spectrum is subtracted from the
magnitude of short-time spectrum of noisy speech signal to
give the magnitude of the enhanced speech spectrum. The
phase of the noisy speech signal is used with the magnitude
of the enhanced speech spectrum to synthesize the discrete-
time enhanced speech signal by inverse Fourier transform. For
results reported in this paper, we used the method described
in [33] and [34] to obtain accurate estimates of noise spectrum.

The speech signal is short-time stationary with a period of
25 to 40 msec. Consequently, a common practice in speech
processing is to divide the speech signal into short time-frames
of order 25msec. The overlapping time-frames were multiplied
with a Hanning window to prevent the spectral leakage. The
windowed time frames are processed by fast Fourier transform
(FFT) to give the short-time spectrum of speech signal [35].
For monitoring the PD participants, SQMs that quantify the
perception of the speech signal by the human auditory system
are needed. These SQMs are derived from short-time speech
spectrum with knowledge of auditory models. The SLPs use
average loudness and average fundamental frequency (F0) that
are derived from short-time spectrum of speech signal.



Fig. 8. Comparison of average fundamental frequency (F0) in Hz for baseline (BL) and smartwatch (SW) speech signals (Numbers above the bars represent
percent deviation from the smartwatch data compared to the baseline).

B. Loudness

Loudness is the perceptual correlate of intensity of the
speech signal. The loudness computation was based on various
auditory models suitable for different types of sounds. We
used the Zwickers method for loudness computation valid for
time varying sound for PD speech [36], [37]. This method is
standardized as DIN 45631/A1 (2008). The human auditory
perception is frequency selective. Its frequency selectivity
is captured by a nonlinear scale known as the Bark-scale.
The critical-band rates (defined by the bark scale) play an
important role in loudness computation. The specific loudness
of a frequency-bin (particular frequency) is denoted as N!,
and measured in Sone/Bark. Loudness, N (in unit Sone) is
the integral of N0, over all criticalband rates. Mathematically,
it is written as

N =

∫ 24Bark

n=0

N0 · dz (1)

Typically, the step-size dz is 0.1 and sum is taken over all
criticalband rates. Sone and Phon are two different units of
loudness [37]. In this paper, we use Phon (in dB) as unit of
loudness level. We denote the six participants as S1, S2, S3,
S4, S5, and S6 and there are three tasks denoted by t1, t2
and t3, respectively. Figure 5 shows a time domain speech
signal and corresponding instantaneous loudness level in dB
(Phon). The loudness depends on amplitude, frequency and
duration of the speech segment. The strong dependence of
loudness on amplitude of speech signal is clearly visible from
this figure. The instantaneous loudness level is high till 1.75
seconds where the amplitude of speech signal is comparatively
higher and after that it decreases. The instantaneous loudness
level follows the amplitude of the speech signal. Loudness
has shallow dependence on frequency and time duration of

speech signal [37]. We analyzed two types of speech data:
one from the baseline microphone (BL) and another from the
smartwatch (SW). We computed the average loudness level (in
dB) for all speech signals as shown in Figure 6. As depicted
in this figure, the difference between the two measurements is
less than 5 percent except S5−t1, S1−t2, and S3−t3 where it
is 8.66, 9.27 and 6.00 percent respectively. These percentage
values are the percent deviation of SW measurements taking
BL measurements as reference. Both of the speech signals
are processed by the same method as discussed above. The
variation in the two loudness values was due to the fact that
slightly different versions of the original speech signal are
acquired by the smartwatch and the microphone as discussed
in Section IV-C and Section V-A. Thus, the smartwatch data
can be used to compute a reliable estimate of speech loudness.
Due to orientation (angular) differences between the SW and
BL, the amplitudes of SW and BL speech signals are slightly
different. The BL signals are dual channel and both channels
were averaged to form a mono channel speech signal before
the pre-processing step. The SW signals are mono channel.

C. Fundamental Frequency

Voiced sounds are periodic, and possess information about
pitch. However unvoiced sounds are random white noise and
do not possess information about pitch. Voiced sound is
produced by the rapid vibration of the vocal folds. Pitch is the
perceived frequency of a sound and is approximately given by
the fundamental frequency (F0). Typically, pitch varies from
80 to 160 Hz for male and from 160 to 400 Hz for female.
The pitch can be approximately computed from peaks in the
log-magnitude spectrum of the speech. The pitch depends on
the languages as well as the person. The audible frequencies
for humans lie between 20 Hz and 20 kHz. However, most of



the speech power is typically contained in a range of 1.5 to
3.4 kHz [38].

The speech is sampled at 44.1 kHz and stored with 16-bit
precision within EchoWear resulting in high fidelity speech
signal. Physically, F0 is related to the rate of vibration of vocal
folds. The variation in F0 reflects the changes in intonation of
speech, i.e., rise and fall of speech while speaking. F0 is the
second most important SQM after loudness. The inverse of the
time-period of the speech signal is the fundamental frequency.
The energy in the speech spectrum is concentrated mostly at
integer multiples of fundamental frequency (F0). The sinu-
soidal components of the speech signal with frequencies above
the fundamental frequency are called the harmonics. For F0

estimation [50 Hz, 500 Hz] is chosen as the search range that is
higher than the expected physical values for voice as discussed
in Section III-B1. For each short time-frame of speech signal
we compute the instantaneous F0 . The time varying F0 for
speech signal is known as F0 contour. The difference between
the highest and lowest frequency in F0 contour is a measure
of pitch range. There are several algorithms for F0 estimation.
We used SWIPE because it is a frequency domain algorithm
for pitch detection and gives the best results for our speech
data. SWIPE is a sawtooth waveform inspired pitch estimator
for speech and music developed in [39]. It tends to find the
frequency that maximizes the average peak to valley distance
at harmonics of that frequency. It avoids taking the logarithm
of the spectrum and applies monotonically decaying weight
to the harmonic components. The logarithm operation leads
to numerical instabilities for spectral nulls that are avoided
in SWIPE. The frequency is transformed into the equivalent
rectangular bandwidth (ERB) scale before multiplying the
weights to improve the performance of SWIPE algorithm. The
ERB scale mimics the frequency sensitivity of the cochlea (in
the inner ear) of human auditory system. ERB leads to more
accurate F0 estimates. The average F0 is computed from F0

contour for both BL as well as SW data. Figure 7 shows a
speech signal and corresponding estimates of instantaneous
F0 (in Hz) by the SWIPE algorithm. We can see that first
few samples of speech have very low amplitude (unvoiced
sound) that does not have pitch as discussed in Section III-B1.
Consequently, the pitch estimates corresponding to unvoiced
speech (low amplitude) are not relevant and hence not ac-
counted for computing average F0. Figure 8 shows the average
F0 (averaged over F0 contour corresponding to voiced sound,
i.e., excluding the first few samples that are very high) for
both BL and SW data. We can see that both BL as well
as SW data give almost the same average F0. The highest
deviation from baseline is 9.35 percent for S5 − t2. Small
variations occur in average F0 due to slightly different speech
signals from baseline microphone and smartwatch as discussed
in the previous section. These variations are insignificant with
respect to monitoring of PD progression by SLPs as we
are interested in comparative values of SQMs over different
days of speech exercise. Hence, for estimation of average F0

SWIPE algorithm can be used with smartwatch in EchoWear
framework.

VI. CONCLUSIONS

The majority of individuals with PD face dysfunctional
speech and seek clinical help from SLPs to improve their
speech intelligibility and voice quality. Patients often partici-
pate in intensive speech therapies to improve communication
effectiveness. A major challenge to treatment is carryover
and generalization of speech strategies outside the clinical
environment. Therefore, SLPs seek new ways assess exercise
compliance and monitor speech in environmentally relevant
communication situations. The current study presented the de-
sign and validation of EchoWear, a smartwatch-based system
for speech treatments and demonstrated that SLPs could use
the smartwatch data and process it to obtain valid and reliable
data for tele-monitoring the speech of patients with dysarthria.
We recruited 6 individuals with and without PD to validate the
reliability of EchoWear. In this work, we analyzed loudness
and fundamental frequency as measures of speech characteris-
tics. The results suggest that EchoWear data were comparable
to data collected using traditional speech recording methods,
even though EchoWear used a mono channel audio signal
unlike the dual channel microphone system used by SLPs.
The data support EchoWear as a reliable framework to collect
speech data from inhome speech exercises. It has the potential
to provide SLPs with a new tool for monitoring speech
during exercises and functional communication to maximize
generalization of speech goals outside the clinical setting.
Further research is required for us to customize EchoWear
for both patients and SLPs such that patients can be trained
to use smartwatches daily and SLPs can follow up with their
patients with the data analytics. In the future, the EchoWear
can be extended to other populations of people with dysarthria
such as those diagnosed with stroke, cerebral palsy, traumatic
brain injury or Down syndrome.
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