7,334 research outputs found

    On the Polish doughnut accretion disk via the effective potential approach

    Full text link
    We revisit the Polish doughnut model of accretion disks providing a comprehensive analytical description of the Polish doughnut structure. We describe a perfect fluid circularly orbiting around a Schwarzschild black hole, source of the gravitational field, by the effective potential approach for the exact gravitational and centrifugal effects. This analysis leads to a detailed, analytical description of the accretion disk, its toroidal surface, the thickness, the distance from the source. We determine the variation of these features with the effective potential and the fluid angular momentum. Many analytical formulas are given. In particular it turns out that the distance from the source of the inner surface of the torus increases with increasing fluid angular momentum but decreases with increasing energy function defined as the value of the effective potential for that momentum. The location of torus maximum thickness moves towards the external regions of the surface with increasing angular momentum, until it reaches a maximum an then decreases. Assuming a polytropic equation of state we investigate some specific cases.Comment: 33 pages, 28 figures, 1 table. This is a revised version to meet the published articl

    Inertial forces and the foundations of optical geometry

    Full text link
    Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in General Relativity. Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota, Class. Quantum Grav. 14 (1997) A23), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways of describing spatial curvature of a trajectory has been discussed in papers prior to this, one particular prescription (which differs from the standard projected curvature when the reference is shearing) appears novel. For the particular case of a hypersurface-forming congruence, using a suitable rescaling of spacetime, we show that a geodesic photon is always following a line that is spatially straight with respect to the new curvature measure. This fact is intimately connected to Fermat's principle, and allows for a certain generalization of the optical geometry as will be further pursued in a companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61). For the particular case when the shear-tensor vanishes, we present the inertial force equation in three-dimensional form (using the bold face vector notation), and note how similar it is to its Newtonian counterpart. From the spatial curvature measures that we introduce, we derive corresponding covariant differentiations of a vector defined along a spacetime trajectory. This allows us to connect the formalism of this paper to that of Jantzen et. al. (see e.g. Bini et. al., Int. J. Mod. Phys. D 6 (1997) 143).Comment: 42 pages, 7 figure

    Generalizing Optical Geometry

    Full text link
    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz and Lasota 1997, Class. Quantum Grav. 14 (1997) A23). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson, Class. Quantum Grav. 23 (2006) 1) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity.Comment: 19 pages, 1 figure. A more general analysis is presented than in the former version. See also the companion papers arXiv:0708.2493, arXiv:0708.2533 and arXiv:0708.253

    Slim accretion discs: a model for ADAF-SLE transitions

    Get PDF
    We numerically construct slim, global, vertically integrated models of optically thin, transonic accretion discs around black holes, assuming a regularity condition at the sonic radius and boundary conditions at the outer radius of the disc and near the black hole. In agreement with several previous studies, we find two branches of shock-free solutions, in which the cooling is dominated either by advection, or by local radiation. We also confirm that the part of the accretion flow where advection dominates is in some circumstances limited in size: it does not extend beyond a certain outer limiting radius. New results found in our paper concern the location of the limiting radius and properties of the flow near to it. In particular, we find that beyond the limiting radius, the advective dominated solutions match on to Shapiro, Lightman & Eardley (SLE) discs through a smooth transition region. Therefore, the full global solutions are shock-free and unlimited in size. There is no need for postulating an extra physical effect (e.g. evaporation) for triggering the ADAF-SLE transition. It occurs due to standard accretion processes described by the classic slim disc equations.Comment: 12 pages, 7 figures, MNRAS accepte

    Inertia of Heat in Advective Accretion Disks around Kerr Black Holes

    Get PDF
    In the innermost region of the advective accretion disk orbiting a black hole of high spin, the inertia of heat stored in the accreting gas is comparable to that of the gas rest mass itself. Accounting for this effect, we derive additional terms in the disk structure equations, and show that the heat inertia plays a significant role in the global energy conservation and dynamics of accretion in the relativistic advective disks.Comment: 6 pages, Latex, submitted to ApJ

    Maximal Acceleration Is Nonrotating

    Get PDF
    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry axis, and in a slowly rotating gravitational field, including the weak-field limit, where the SCAM is shown to be counter-rotating relative to infinity. These formulas are evaluated in particular detail for the Kerr-Newman metric. Various other congruences are also defined, such as a Stationary Congruence Rotating at Minimum (SCRAM), and Stationary Worldlines Accelerating Radially Maximally (SWARM), both of which coincide with a SCAM on an equatorial plane of reflection symmetry. Applications are also made to the gravitational fields of maximally rotating stars, the Sun, and the Solar System.Comment: 64 pages, no figures, LaTeX, Sections 10 and 11 added with applications to maximally rotating stellar models of Cook, Shapiro, and Teukolsky and to the Sun and Solar System with recent data from Pijpers that the Sun has angular momentum 1.80 x 10^{75} = 0.216 M^2 = 47 hectares = 116 acres (with 0.8% uncertainty) and quadrupole moment (2.18 x 10^{-7})MR^2 = 1.60 x 10^{14} m^3 = 3.7 x 10^{117} (with 3% uncertaity), accepted Feb. 27 for Classical and Quantum Gravit

    Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes

    Get PDF
    We study the phenomenon of gyroscopic precession and the analogues of inertial forces within the framework of general relativity. Covariant connections between the two are established for circular orbits in stationary spacetimes with axial symmetry. Specializing to static spacetimes, we prove that gyroscopic precession and centrifugal force both reverse at the photon orbits. Simultaneous non-reversal of these in the case of stationary spacetimes is discussed. Further insight is gained in the case of static spacetime by considering the phenomena in a spacetime conformal to the original one. Gravi-electric and gravi-magnetic fields are studied and their relation to inertial forces is established.Comment: 21 pages, latex, no figures, http://202.41.67.76/~nayak/gpifass.te

    Optical geometry for gravitational collapse and Hawking radiation

    Full text link
    The notion of optical geometry, introduced more than twenty years ago as a formal tool in quantum field theory on a static background, has recently found several applications to the study of physical processes around compact objects. In this paper we define optical geometry for spherically symmetric gravitational collapse, with the purpose of extending the current formalism to physically interesting spacetimes which are not conformally static. The treatment is fully general but, as an example, we also discuss the special case of the Oppenheimer-Snyder model. The analysis of the late time behaviour shows a close correspondence between the structure of optical spacetime for gravitational collapse and that of flat spacetime with an accelerating boundary. Thus, optical geometry provides a natural physical interpretation for derivations of the Hawking effect based on the ``moving mirror analogy.'' Finally, we briefly discuss the issue of back-reaction in black hole evaporation and the information paradox from the perspective of optical geometry.Comment: 13 pages, 10 figures, aps, revtex, To be published in PR

    The determination of the electron-phonon interaction from tunneling data in the two-band superconductor MgB2

    Get PDF
    We calculate the tunneling density of states (DOS) of MgB2 for different tunneling directions, by directly solving the real-axis, two-band Eliashberg equations (EE). Then we show that the numeric inversion of the standard single-band EE, if applied to the DOS of the two-band superconductor MgB2, may lead to wrong estimates of the strength of certain phonon branches (e.g. the E_2g) in the extracted electron-phonon spectral function alpha^(2)F(omega). The fine structures produced by the two-band interaction turn out to be clearly observable only for tunneling along the ab planes in high-quality single crystals. The results are compared to recent experimental data.Comment: 2 pages, 2 figures, proceedings of M2S-HTSC-VII conference, Rio de Janeiro (May 2003
    • …
    corecore