294 research outputs found

    Heterogeneous Water and Energy End-Uses and Implications for Residential Water and Energy Conservation and Management

    Get PDF
    The thesis develops an integrated approach to model heterogeneous household water and energy end-uses and their linkages. The approach considers variations in behavioral and technological water-and-energy-use factors that affect indoor residential water- and energy-use in the U.S. Here, we use a recent, large, national, disaggregated household dataset of potable hot and cold water end-uses collected from eleven cities. We also use national energy data to estimate heterogeneous energy-uses for household water appliances including toilets, showers, faucets, clothes-washers, and dishwashers. First, probability distributions of water- and energy-use factors are identified, correlated, and compared among study sites. Then Monte Carlo simulations are used to calculate probability distributions for estimated households’ water-and-energy-uses. Finally, linear regressions are used to find the relative effects of water and energy factors on household energy-use. Results show that water and energy distributions among households are heavily skewed, with the largest 14.6% of the users consuming 30.5% and 33.1% of water and energy, respectively. Water heater dispense temperature followed by faucet flowrate have the highest relative effect on household energy-use and should be targeted to reduce household energy use. The approach improves prior homogenous and deterministic water-energy models and can help utilities select and size cost-effective collaborative water and energy conservation actions

    Advancing Water Resources Systems Modeling Cyberinfrastructure to Enable Systematic Data Analysis, Modeling, and Comparisons

    Get PDF
    Water resources systems models aid in managing water resources holistically considering water, economic, energy, and environmental needs, among others. Developing such models require data that represent a water system’s physical and operational characteristics such as inflows, demands, reservoir storage, and release rules. However, such data is stored and described in different formats, metadata, and terminology. Therefore, Existing tools to store, query, and visualize modeling data are model, location, and dataset-specific, and developing such tools is time-consuming and requires programming experience. This dissertation presents an architecture and three software tools to enable researchers to more readily and consistently prepare and reuse data to develop, compare, and synthesize results from multiple models in a study area: (1) a generalized database design for consistent organization and storage of water resources datasets independent of study area or model, (2) software to extract data out of and populate data for any study area into the Water Evaluation and Planning system, and (3) software tools to visualize online, compare, and publish water management networks and their data for many models and study areas. The software tools are demonstrated using dozens of example and diverse local, regional, and national datasets from three watersheds for four models; the Bear and Weber Rivers in the USA and the Monterrey River in Mexico

    THE IMPACT OF USING ACCOUNTING INFORMATION SYSTEMS ON THE QUALITY OF FINANCIAL STATEMENTS SUBMITTED TO THE INCOME AND SALES TAX DEPARTMENT IN JORDAN

    Get PDF
    This study aim to demonstrate the use of the accounting information systems’ impact on the quality of financial statements submitted to the Income Tax and Sales department in Jordan and the impact of such use, where Income Tax and Sales department works to collect tax money and auditing on tax payers in order to supply the state treasury with public revenues, a questionnaire consists of fourteen questions was designed by the researcher to measure the impact of the use of accounting information systems on the quality of financial statements submitted to the department, this questionnaire was distributed on 50 accountants who work in the department, all distributed questionnaires were retrieved, arithmetic mean and standard deviation have been extracted to describe the answers of the study sample, Cronbach's alpha test was used to measure the stability of measurement tool and also simple linear regression test was also used to test the hypothesis of the study. The study found that there is a presence of an impact when using the accounting information systems on the quality of financial statements submitted to the Income Tax and sales Department in Jordan, the study recommends to focus on the development of the devices used in the department, train and development of the staff on an ongoing basis to enable them to continue to perform their jobs and improve the quality of financial statements in the department

    The Effect of Operating Conditions on the Performance of a Vacuum Membrane Distillation Unit Using PES Flat Sheet Membrane

    Get PDF
    The desalination of seawater is considered a promising source of potable water in Egypt. Vacuum Membrane Distillation (VMD) is a new separation technology based on the evaporation of saline water through hydrophobic porous membranes by applying vacuum pressure on the permeate side of the membrane to desalinate brackish or seawater. A lab scale experimental model was constructed and operated using hydrophobic polyethersulfone flat sheet membrane (PES) with effective area of 0.049 m2, pore size 0.2-0.4 µm and thickness 120-160 µm. Salt concentration ranging from 5000 ppm to 35000 ppm aqueous NaCl. Resultant permeate flux was measured for the following operating conditions: feed flow temperature (40-50-60-70 °C), flowrate (1-1.2-1.4-1.6 L/min), and vacuum pressure (0.2-0.3-0.4-0.5 Bar). Results showed an increase in permeate flux due to increased temperature, flow rate and vacuum pressure, while it decreased with the increase in salt concentration. The flux value obtained reached 15 kg/m2.hr at T= 40°C, vacuum pressure= 0.4 bar, TDS= 5000ppm, and flow rate 1 L/min, while it reached 29 kg/m2.hr at  T= 70°C, vacuum pressure= 0.5 bar, TDS= 35,000 ppm, and flow rate 1.6 L/min. Electric power consumed by the system reached 0.612 Kwh at  T=70°C, TDS =5000ppm, vacuum pressure = 0.4 bar, and feed flow rate 1 L/min. Keywords: VMD, desalination, vacuum pressure, hydrophobic membrane

    A Data Model to Manage Data for Water Resources Systems Modeling

    Get PDF
    Current practices to identify, organize, analyze, and serve data to water resources systems models are typically model and dataset-specific. Data are stored in different formats, described with different vocabularies, and require manual, model-specific, and time-intensive manipulations to find, organize, compare, and then serve to models. This paper presents the Water Management Data Model (WaMDaM) implemented in a relational database. WaMDaM uses contextual metadata, controlled vocabularies, and supporting software tools to organize and store water management data from multiple sources and models and allow users to more easily interact with its database. Five use cases use thirteen datasets and models focused in the Bear River Watershed, United States to show how a user can identify, compare, and choose from multiple types of data, networks, and scenario elements then serve data to models. The database design is flexible and scalable to accommodate new datasets, models, and associated components, attributes, scenarios, and metadata

    Experimental Characterization of a Functionally Graded Composite Using Recycled Steel Fiber

    Get PDF
    Many industries have recently focused on cost-effective materials with good mechanical properties. Steel fiber reinforced cementitious composites have proven their mechanical performance in industrial and structural components. The concept of recycled fiber-reinforced FGM is used as an alternative construction material, which can be one of the proposed cost-effective solutions. To achieve these objectives, an experimental program has been developed. A cementitious composite based on local materials was strengthened in two designs; one strengthened over the entire cross-section and the other strengthened only in the tensile zone. We also substituted a functional gradient material reinforced with recycled fibers considering the following volume fractions: 0, 0.5, 1, and 1.5%. This paper investigates the feasibility of using recycled fibers from industrial waste from steel wool manufacturing as reinforcement. We also characterized their mechanical properties using ultrasonic pulse velocity, compressive strength, flexural tensile strength, and shear strength. The results show that the corrugated recycled fibers are the ideal choice to increase the mechanical performance of the reinforced composite, including the improvement of flexural and shear behaviors. Therefore, the investigated FGC could be a valuable tool to optimize the design process in various structural applications and make the production of mechanically and environmentally economical composites possible. Doi: 10.28991/CEJ-2022-08-05-03 Full Text: PD

    Developing a stochastic simulation model for the generation of residential water end-use demand time series

    Get PDF
    : Smart metering technologies allow for gathering high resolution water demand data in the residential sector, opening up new opportunities for the development of models describing water consumers’ behaviors. Yet, gathering such accurate water demand data at the end-use level is limited by metering intrusiveness, costs, and privacy issues. In this paper, we contribute a stochastic simulation model for synthetically generating high-resolution time series of water use at the end-use level. Each water end-use fixture in our model is characterized by its signature (i.e., its typical single-use pattern), as well as frequency distributions of its number of uses per day, single use duration, time of use during the day, and contribution to the total household water demand. The model relies on statistical data from a real-world metering campaign across 9 cities in the US. Showcasing our model outputs, we demonstrate the potential usability of this model for characterizing the water end-use demands of different communities, as well as for analyzing the major components of peak demand and performing scenario analysis
    • …
    corecore