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Abstract (150 words limit)  
Current practices to identify, organize, analyze, and serve data to water resources systems 

models are typically model and dataset-specific. Data are stored in different formats, described 

with different vocabularies, and require manual, model-specific, and time-intensive 

manipulations to find, organize, compare, and then serve to models. This paper presents the 

Water Management Data Model (WaMDaM) implemented in a relational database. WaMDaM 

uses contextual metadata, controlled vocabularies, and supporting software tools to organize 

and store water management data from multiple sources and models and allow users to more 

easily interact with its database. Five use cases use thirteen datasets and models focused in 

the Bear River Watershed, United States to show how a user can identify, compare, and choose 

from multiple types of data, networks, and scenario elements then serve data to models. The 

database design is flexible and scalable to accommodate new datasets, models, and associated 

components, attributes, scenarios, and metadata.  
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Highlights (up to 5 points with each 85 characters max with spaces) 

 We present a data model to organize water resources systems data and models 

 Controlled vocabularies link native terms across different datasets and models   

 Software tools manage controlled vocabularies and help load datasets  

 Modelers can identify and compare available data then serve data to models 
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Developer: Adel M. Abdallah  

Contact: Adel M. Abdallah; 8200 Old Main Hill, Logan, UT 84322, USA; Email 

amabdallah@aggiemail.usu.edu  

Year first available: 2018 

 

Required hardware and software: The WaMDaM data model can be used within any relational 

database management system or platform. The WaMDaM Wizard executable (.exe) is available 

for use with Microsoft Excel (2007 and later) and SQLite3 on Windows 64-bit computers. 

 

Input data and directions: Documentation of all source code, datasets, use cases, and 

instructions to use WaMDaM and replicate results are available on GitHub and facilitated by 

Jupyter Notebooks at http://doi.org/10.5281/zenodo.1484581 

 

Programming languages: Python 2.7 and Structured Query Language (SQL)  

 

Cost and license: Free. Software and source-code are released under the New Berkeley 

Software Distribution (BSD) 3-Clause License, which allows for liberal reuse.  
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1. Introduction 

Data analysis and synthesis are fundamental in developing water resources 

management models (Loucks et al., 2005). Data organization enables or inhibits the analysis 

that water managers and modelers perform (Brown et al., 2015; Horsburgh et al., 2008). Well 

organized data can help modelers prepare data for models while poorly organized data can 

make the process time-consuming and frustrating. Current practices to organize, manipulate, 

and compare multiple water resources datasets and develop water systems models are typically 

specific to the data sources, models, and study location (Brown et al., 2015). Source-, model-, 

and study area-specific practices arise because models have different data requirements for 

their components, store data in different file formats, have varying spatial and temporal 

coverage, use inconsistent metadata to describe methods, sources, and units, and use different 

vocabularies to name similar system components and their attributes (Laituri and Sternlieb, 

2014; Maidment, 2016; Miller et al., 2004). These practices limit managers’ and modelers’ ability 

to reuse datasets and models in other applications. To reuse, practitioners often spend up to 

75% of their overall modeling time to modify, subset, transform, convert, and restructure data 

(Beniston et al., 2012; CUAHSI, 2005; Draper et al., 2003; Hey et al., 2009; Leonard and Duffy, 

2013; Maidment, 2008; Michener, 2006; Miller et al., 2004; Ridley and Stoker, 2001; Watkins, 

2013). A common database design to organize and manage water resources system data can 

help modelers and managers spend less time to wrangle with data formats and structures and 

more effort on analysis to learn about and model systems. 

Water management data describe natural and built water system components like water 

supply, infrastructure, and demand sites, and these components are typically represented as 

networks of nodes and links (Brown et al., 2015; Loucks et al., 2005; Rosenberg and Madani, 

2014). Each node and link are described with properties that represent observed values and 

input data, or variables that store model results. Data can be organized in time series, as 

seasonal parameters, as multi-variable arrays, or in other types.  

In current practice, a water resources system modeler selects a water management 

modeling method and then searches for input data that meets the model’s requirements (Brown 

et al., 2015). Modelers often manually search for, download, synthesize, and compare data from 

disparate datasets to populate input data (Rosenberg and Madani, 2014). In their data search, 

modelers often use a combination of existing methods to manually gather input data for the 

different supply and demand system components and their connectivity from local, state, and 

federal agencies. Searches can also use national data services like the Consortium of 

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Water Data Services 
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(Couch et al., 2014; Goodall et al., 2008). Each dataset has a particular file-format, 

organizational structure, syntax, and descriptive terminology. Some datasets also come with 

modeling scenarios that represent changes to values of physical, operational, network topology, 

or socio-economic attributes of the system. Modelers must reconcile structure and terminology 

heterogeneities in potential input data.  

Many water resources modelers use the U.S. Army Corps of Engineers Hydrologic 

Engineering Center Data Storage System (HEC-DSS) (HEC, 2009) to store and manage paired 

variables and time series data. Modelers also use Hydra Platform (Knox et al., 2014) and 

ArcHydro (Maidment, 2002) for network connectivity. Others may also use the Observations 

Data Model (ODM) for organizing and storing site-specific time series data (Horsburgh et al., 

2008). Other modelers simply organize data into one or many spreadsheets within a Microsoft 

Excel workbook with consistent column headers (e.g., variables) and units. Still other modelers 

store data that describe the water system and its operations in proprietary modeling software 

systems like the Water Evaluation and Planning system (WEAP) (Yates et al., 2005), RiverWare 

(Zagona et al., 2001), OASIS, ModSim, and others (Loucks et al., 2005; Wurbs, 1993; Wurbs, 

2012). Although models like RiverWare (Zagona et al., 2001) and WEAP (Yates et al., 2005) are 

not strictly used for data management purposes, we consider them data management systems 

because they contain large amounts of data that describe water systems and house the data 

used for numerous river basin management studies around the world. 

To identify, analyze, or compare water management data stored in one or many of the 

above systems, modelers often develop source- and model-specific workflows to manipulate, 

join, pivot, sort, aggregate (in time and/or space), and visualize data. Simultaneously, modelers 

must keep track of metadata, if present, that describe the source of data, methods used for 

creating the data, and methods used to transform data to a format appropriate for a particular 

model. These metadata elements are typically specific to the data source and model. Adding a 

data source, expanding a study area, or changing the underlying model means the modeler 

must modify the data preparation workflow or create a new workflow. Modelers then must 

manually repeat data manipulations and analyses. 

Thus, there is a need for a generalized method to more readily and consistently 

organize, store, join, query, and compare multiple types of water management data and 

contextual metadata across datasets, models, and study areas (Bajcsy, 2008; Brown et al., 

2015; Govindaraju et al., 2009; Vogel et al., 2015). This need arises because of two 

fundamental data management challenges related to how data is structured (i.e., syntax) and 

how key data components are named and described (i.e., semantics). An example of different 
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syntaxes is the number and order of headers and rows in a spreadsheet. Examples of different 

semantics include hydrologic system component names (e.g., “reservoir” versus “storage 

facility”), attribute names (e.g., “storage” versus “volume”), and system component names (e.g., 

“Hyrum Reservoir” versus “HYRUM”).  

In reviewing more than 40 existing systems to organize water management data 

(Appendix A, Table A1), we found all systems incompletely support structure and syntax 

issues. Systems have different and limited capabilities to query and compare multiple datasets 

and models, no software standards, or no guidelines to organize water management data. 

Differences include how data is represented in space and time, how data is organized within 

structures (i.e., data type) (DCMI, 2013), the physical means used to store data (i.e., database, 

text file, or other formats) (DCMI, 2013), and software technology. The heterogeneity in 

methods reveals why modelers spend considerable time preparing and transferring data across 

different models, formats, and technologies. 

Several recent efforts to increase data consistency and transparency, such as the Open 

Water Data Initiative (Blodgett et al., 2016), Observations Data Model 2 (Horsburgh et al., 

2016), the Open and Transparent Water Data Act (Cantor et al., 2018; Dodd, 2016), and the 

Water Data Exchange program (Larsen and Young, 2014) have recommended data standards 

to integrate fragmented water information data into consistent and interoperable data systems. 

Such integrations and requests for them aim at improving access to water information to help 

quantify its availability and use at different scales in the present and future. Here, we contribute 

a generalizable data model called the Water Management Data Model (WaMDaM) to help 

organize, join, compare, and analyze multiple water resources datasets and models. We also 

introduce software tools that demonstrate key functionalities of the design. The WaMDaM 

design helps answer the overarching research question of: how can data from multiple sources 

be organized and described in a semantically and syntactically consistent way to facilitate data 

query, comparison, joining, and analysis that will ultimately help modelers choose input data to 

build and run water resources systems models? A successful WaMDaM database design must 

have: 1) modular and extensible components, 2) networks of nodes and links, 3) scenarios and 

version control, 4) reusable contextual metadata, 5) support for multiple data types used by 

systems models, 6) extensible controlled vocabularies, 7) direct access to subsets of data and 

metadata, and 8) an open-source environment.  

Next, we describe the motivation and design requirements for the WaMDaM system. 

Section 3 presents the WaMDaM data model design and physical implementations. Section 4 

introduces companion software tools. In Section 5, we use WaMDaM to join 13 overlapping 
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local, regional, and national models and datasets. We demonstrate the utility of the data model 

in five use cases. The use cases help modelers to identify, compare, and select water supply 

and demand data, connectivity between engineered infrastructure and natural systems 

components, model scenario data, and serve selected data to a WEAP model for the Bear River 

Watershed of Utah. Section 6 discusses how modelers can use WaMDaM, limitations, future 

work, and an invitation to use and improve the design. Section 7 concludes. 

2. Design Motivation 

WaMDaM focuses on the essential steps to organize, join, compare, analyze, and serve 

multiple datasets to build a water resources model. Because modelers often use multiple 

systems to gather, organize, store, join, and query the water management data they need to 

build models (Figure 1-A), they repeat that effort for each new model, data set, scenario, 

system component, and element. Modelers would benefit from a general approach that only 

requires doing the work once but allows others to re-use their effort in their other endeavors 

(Figure 1-B). Five use cases guide the WaMDaM design by answering key water management 

data questions. These use case questions sidestep less important aspects that may 

overcomplicate the design (Szalay and Blakeley, 2009). The use case questions are:  

1. What data entered by others can be used to develop a model in a study area? 

2. Which network connectivity should be used in a model?  

3. How do data values differ across datasets and which values should be chosen for a model?  

4. How do scenarios differ and which scenarios should be chosen in a model?  

5. How do the input data developed in earlier use cases affect model outputs? 
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Figure 1: (A) Current data practices use different systems and data manipulation methods for 
each data source and study area while (B) a generalized data model integrates across the 
structure and syntax of data sources. The WaMDaM Wizard with scripts, SQL, and APIs allow 
modelers to undertake multiple efforts, such as load data, identify data for models, compare 
networks, data values, and scenarios, and serve data to models. 
 

 

2.1 Synthesis of design requirements 

We synthesized eight design requirements for an integrative data system from 40 prior 

data management approaches (Appendix A, Table 1). Below, we define each design 

requirement and then discuss how the requirement improves over prior approaches. 

The first requirement for a modular and extensible design will allow inclusion of multiple 

model types and their system components (e.g., reservoirs, demand sites, canals) as reusable 

data objects (i.e., as classes or modules) with properties or attributes (Connolly and Begg, 

2010; Knox et al., 2014; Wurbs, 2012; Zagona et al., 2001). Attributes may apply to all network 

components globally or to individual components. For example, a time series of inflow applies to 

one reservoir component, while a budget parameter applies to a network. To improve storage 

efficiency and enable consistent reuse of data, the design must be able to share the same value 

of an attribute across many water resources system components. 
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Modular and extensible design is supported in most existing data systems and water 

management models such as Hydra Platform and the ODM (Harou et al., 2010; Knox et al., 

2014). Other systems, such as ArcHydro and WEAP (Maidment, 2002; Yates et al., 2005) allow 

adding new data objects (as in ArcHydro), but users are still forced to use core components and 

attributes that might not be needed for a case study.  

The second requirement is to represent the spatial configuration of system components 

as networks of nodes (junctions or points) and links between nodes (arcs, connections, curves, 

lines, or edges of a directed graph) (HydroLogics, 2009; Rossman, 2000; Zeiler, 1999). 

Networks help modelers organize and search for system components that are related in 

purpose (e.g., flow of water through connected pipes), use (e.g., drinking water supply), or in a 

spatial boundary (e.g., Bear River Watershed) (Loucks et al., 2005). Networks also represent 

connectivity which is a key principle of water mass-balance fundamental to most systems 

models. Although most existing data systems support networks, each system uses different 

data organization method and terms to manage the connectivity of nodes and links. Such 

different structures require different methods to query network data. While the ODM (Horsburgh 

et al., 2008) stores time series data for individual nodes or links, ODM cannot describe how the 

nodes relate to each other (upstream, downstream, etc.). A consistent method to represent 

networks will allow users to consistently retrieve information about how nodes are connected to 

each other through links.  

Third, the data system must describe and store scenarios that represent changes to the 

physical, operational, infrastructure, and socio-economic model input data. Scenarios allow 

modelers to test and run current and proposed water management alternatives. The scenario 

requirement also includes the ability to track and manage versions of changes from a baseline 

network. A scenario can be created by one or two potential changes to a water system network: 

i) change network topology like to add or remove an infrastructure component and ii) change 

data for one or more attributes of a component such as to expand the capacity of a reservoir or 

update metadata such as the method or data source. Many existing systems (e.g., WEAP) use 

scenarios to track changes in input data but cannot track changes in the network components.   

Fourth, the data system must allow users to add contextual metadata; the additional 

information to help modelers interpret data. Metadata also helps modelers maintain the data 

provenance  needed to track the history and context of sources, methods, people, and 

organizations that contributed to create the data (Campbell et al., 2013; Carata et al., 2014; 

DCMI, 2013; Goodman et al., 2014; Gray et al., 2005; Horsburgh et al., 2008; Pokorný, 2006). 

Some existing systems store metadata in one table that accepts user-specified key-value 
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metadata pairs (e.g. (Knox et al., 2014; Refsgaard et al., 2005). HEC-DSS manages and 

retrieves large sequential datasets, such as time series and paired tabular data. Support to 

describe each time series is limited to six metadata parameters that include the variable name, 

location, and time step. Each parameter must be described in less than 80 characters (HEC, 

2009). The ODM uses contextual metadata to describe units, sources, and methods for 

collecting observational data variables at a site. This requirement mandates explicit support for 

the following fundamental metadata elements the unit, source, method, people, and their 

organization that contributed to creating data. The support to explicit metadata elements guides 

users to populate, reuse, and later to directly query them. 

Fifth, the data system must be able to store and describe multiple data types that 

modelers use to represent physical, operational, and descriptive attributes of system 

components: time series, multi-attribute series (e.g., multi-variable for a reservoir bathymetry), 

numeric, categorical values (e.g., gate open or closed), and seasonal parameters (e.g., values 

that are the same for months across the years). Many existing systems support multiple data 

types, but store them as binary data objects which limits users’ ability to access stored data 

outside the software system (Harou et al., 2010; Knox et al., 2014). Supporting multiple data 

types allows modelers to store, access, and reuse different types of data for properties of water 

systems components.   

Sixth, the data system must support controlled vocabularies (CVs) as sets of terms with 

definitions for object types, attributes, and names of nodes and links. CVs allow modelers to 

retain the native terms they are familiar with but simultaneously relate native terms to consistent 

names that can be reused across datasets and models (Laniak et al., 2013). For example, the 

following native terms are related to a single CV term (e.g., Reservoir): reservoir (WEAP), 

storage reservoir (RiverWare), Reservoir Node (Bear River Systems Dynamic Model), reservoir 

(US Bureau of Reclamation). The CV term then links all the fundamentally similar native terms 

together. Thus, a query for “Reservoir” returns all related native terms.  

Seventh, the data system must support direct access to subsets of data and metadata 

that enable search and filtering based on a schema. In contrast, unstructured data storage 

known as the Binary Large OBject (BLOB) formats (Sears et al., 2006) do not allow direct 

access to subsets of stored values but rather to the entire block of data. Although storing BLOB 

data such as blocks of time series or arrays as in Hydra Platform and HEC-DSS (HEC, 2009) 

can be efficient and fast, users must use custom functions to decode and access subsets of the 

content. In a structured data storage, modelers can load and retrieve subsets of data based on 
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selected water system components, attributes, metadata, networks, scenarios, and data types 

in space and time without being limited to a custom method.  

The eighth requirement is to develop the WaMDaM implementations using free and 

open-source software tools, to allow access via an open-source code repository, promote 

reproducibility, and help others further advance the method (Easterbrook, 2014; Gil et al., 2016; 

Goodman et al., 2014). At the same time, we recognize that open-source software require 

documentation to be reusable. Many existing data systems like WEAP, RiverWare, and HEC-

DSS are proprietary and require specific tools to access their data. Those proprietary 

approaches contrast with other customized systems models that use a mix of spreadsheets, text 

files, and the General Algebraic Modeling System (GAMS) file formats to organize their data 

and metadata.  

 

2.2 Support for Design Features 

To date, existing water resources systems software tools incompletely support the eight 

requirements (Table 1). Thus, we designed WaMDaM to support all eight requirements. The 

next section describes how WaMDaM is designed and implemented to support the eight 

requirements, answer four use case questions, and complete a fifth use case that serves data to 

a model.  

 

Table 1: Support for the identified requirements by select data systems and water resources 
models. An “X” indicates that the system supports the requirement.  
 Select Data System / Model 

Data Management Requirement ODM Hydra Platform HEC-DSS ArcHydro RiverWare WEAP 

Modular and extensible design  X X     

Supports networks of nodes & links  X  X X X 

Supports scenarios & version control  X X  X X 

Reusable contextual metadata X      

Multiple data types for system models  X X  X X 

Extensible controlled vocabularies X      

Direct access to subsets of data X   X   

Open-source environment & license  X X     
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3. WaMDaM Design  

We used the eight requirements described in Section 2 to design the WaMDaM data 

model and its physical implementations to organize, manage, join, query, and compare water 

resources datasets and models. We aimed for a parsimonious design that minimizes the 

number of data and metadata entities needed to satisfy the eight requirements and answer the 

use case questions (Hey et al., 2009). The criteria for a successful design was a design that 

satisfies the eight requirements and answers the use case questions. Below we present the 

conceptual design, then show the logical design using an Entity Relationship Modeling (ERM) 

diagram. Afterwards, we describe physical implementations. 

 

3.1 WaMDaM Conceptual Design 

The WaMDaM conceptual design has multiple hierarchal one-to-many relationships; 

color-coded grouped entities represent key design requirements (Figure 2). In general, the 

color-coded groups define the steps a modeler would follow to populate a physical 

implementation of the design with data.  

The first group of blue entities supports a modular and extensible design by allowing the 

modeler to define the resource type (e.g., a WEAP model), one or many object types (e.g., 

reservoir, river reach, diversion, etc.) for each resource type, and one or many attributes (e.g., 

storage or diversion capacity, head flow, etc.) for each object type (Requirement #1). A resource 

type represents the types of data (input or output) used in a data provider such as a “Model 

Program” as defined in Morsy et al. (2017), independent of implementation. For example, a 

WEAP model resource type has 21 object types (e.g., reservoir, demand site, transmission link, 

etc.) and each object type has many attributes (e.g., “Storage Capacity”, “Net Evaporation”). 

The resource type entity can also be used for datasets. For example, the U.S. Major Dams 

Inventory shapefile has a list of 18 attributes that have values for the “Dam” object type. An 

object type is a system component with typologies such as node or link (e.g., reservoir, canal, 

water source, or demand site) and can have one or more quantitative or qualitative properties or 

attributes with units. 

The second group of green entities supports networks and scenarios by allowing 

modelers to define a master network with many scenarios where each scenario can have one or 

many instances that are either node or links (Requirements #2 and #3). To specify connectivity 

among instances, links must have start and end nodes. 
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The third group of orange entities allow modelers to use reusable, contextual metadata 

where a modeler affiliates people to an organization and specifies methods and sources that 

generate data (Requirement #4). The fourth group of red entities allow modelers to store seven 

distinct types of data values such as time series or categorical data (Requirement #5). Within a 

scenario, an attribute for an instance has a source, method, and data type. The fifth group of 

controlled vocabulary (purple entities) allows modelers to relate native terms for object types, 

attributes, and instances (Requirement #6).  

We satisfied direct access to all data and metadata (Requirement #7) by using relational 

database theory (also referred to as the Relational Model) to implement the data model entities 

as interrelated tables (Chen, 1976; Codd, 1970) as further described in Section 3.2. We 

developed a physical implementation of the data model and software tools in an open-source 

physical database system (Requirement #8; see Section 3.3). Next, we explain how and why 

the relationships are implemented to form the WaMDaM Logical Data Model.  

 

 

Figure 2: The conceptual diagram relating the first six design requirements for the water 
management data model. Key controlled vocabularies are introduced to the boxes outlined in 
purple.  

 

3.2 WaMDaM Logical Data Model 

The Logical Data Model schema shows the one-to-one, one-to-many, and many-to-one 

relationships among database entities (Figure 3). Blue, green, orange, red, and purple colors 

again indicate tables associated with the resource type, networks and scenarios, metadata, data 

values, and controlled vocabulary design requirements. A WaMDaM data value is described by 

fourteen required elements (Appendix A, Table A2). Here we describe six key requirements 
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that are needed to interconnect schema components and specify the fourteen required 

elements and design requirements. We pluralize data model entities and list them in italics and 

capital letters.  

First, ResourceTypes are datasets (like the U.S. Major Dams Inventory) or models (like 

WEAP) and have one or more system components called ObjectTypes (such as a reservoir, 

canal, water source, or demand site). ObjectTypes have typologies such as node or link and 

one or more quantitative or qualitative properties called Attributes (such as storage capacity, net 

evaporation, or delivery target). Here we use the broad term attribute, as a contextual property 

which also may include variables that are measured and might change with time (Sarle, 1995). 

Attributes could also describe model outputs. Each attribute has a unit, attribute data type, and 

by choice whether it is used as “Input” or “Output” in a water resources model. 

Second, an object type such as a “Reservoir” can be specified (i.e., implemented) for 

zero or more locations as Instances (e.g., Hyrum Reservoir, Bear Lake, and Flaming Gorge 

Reservoir would be three separate reservoir instances). An instance inherits the Attributes of its 

object type and may be geo-referenced as a node in space with longitude and latitude 

coordinates. Instances can also be a link which has start and end nodes. The Connections 

entity specifies a start and end node for links and avoids a circular reference problem when 

connecting the ObjectTypes table directly to both the Instances, Attributes, and ValuesMapper 

tables. A circular reference in a database is problematic to database integrity as it may allow 

multiple transaction paths to insert or delete data. In the data systems modelers may represent 

the same water system component, such as reservoir, as a node or a link in a model. Thus, 

storing nodes and links in the Instances table and link connectivity info in the Connections table 

enables modelers to use the same query to access data for nodes or links and improves over 

prior approaches that require many different queries to access data for node or links (Abdallah 

and Rosenberg, 2014; Knox et al., 2014; Yates et al., 2005). 

Third, one or more node and link Instances can be connected into MasterNetworks (e.g., 

water supply/demand, water distribution, or other network for a study area). Each master 

network contains one or many Scenarios in a study area (such as a base case, reduced inflow, 

or new infrastructure). Scenarios within the same master network may share the same exact 

network topology or versions of the network and its data. Each scenario also has a start and 

end date and time step to track the modeling time step and its extent. 

Fourth, the Mappings bridge entity relates Instances to their ObjectTypes, Attributes, 

metadata Sources and Methods, Scenarios, and data values. This bridge entity is the central 

table in the WaMDaM database. This Mappings entity is needed because ObjectTypes can 
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have i) many Attributes (e.g., reservoir object type can have evaporation depth, storage 

capacity, and volume-area attributes), ii) each Instance (e.g., Hyrum Reservoir, Bear Lake, or 

Flaming Gorge Reservoir) can have shared or instance-specific attribute values, and iii) 

Instances can also have shared or instance-specific Sources and Methods metadata values.  

Fifth, data values are assigned to one of seven supported data types and connected 

through the ValuesMapper entity to the Mappings bridge entity. The seven supported data types 

(numeric, seasonal, categorical, free text, time series, multi-attribute series, electronic file) are 

commonly used in the models we reviewed (Appendix A, Table A3). Similar to prior time-series 

data models like ODM and ODM2, the TimeSeries entity (e.g. flow versus time) captures key 

global metadata for the entire time series and can have one or many values, time stamps, 

aggregation statistics (e.g., average, cumulative, etc.), and year types to indicate water year or 

calendar year. The MultiAttributeSeries entity organizes paired data (e.g., area-elevation curve) 

by referencing multiple Attributes. Each paired attribute has one or many values and sequential 

order to preserve the order and pairing of values across many attributes within the same array. 

Additional attribute data types can be added and connected to the ValuesMapper entity without 

affecting any of the existing data model relations. The ValuesMapper entity helps to reuse and 

share attribute data across many Instances (Requirement #5). This WaMDaM approach of 

storing values once and sharing them is more efficient and allows the option to register the term 

one time with a controlled vocabulary. 

Sixth, the ScenarioMappings bridge entity further allows modelers to share similar 

Instances, their Attributes, metadata, and values across Scenarios with no duplication. The 

WaMDaM Wizard, presented later in Section 4, also uses the ScenarioMappings bridge entity to 

query and compare how combinations of Instances, their Attributes, and data tables change 

between two Scenarios within the same master network. 

Seventh, People, Organizations, Sources, and Methods support four essential key 

metadata entities needed to interpret Instances and values. The Sources entity describes the 

origin or encompassing package of data such as a shapefile, web service, or a model for a 

study area which may have a citation and a webpage. The Methods entity describes how values 

were created, an instance is defined, data quality, and the resource type works (e.g., simulation 

or optimization method for a model program). Modelers may document uncertainty in the data 

and indicate the quality of data within the method that generated it. Each source or method is 

associated with a person (author) who set up the source or created the method. Each person 

belongs to an organization. If no person is associated with data, modelers can define a person 

as “unknown” and relate to the organization that created the source or method. We recognize 
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that there is potential for a more complex and specific representation of metadata. We 

attempted to balance between the principles and practicality of metadata usage as 

recommended by Duval et al. (2002). Complex metadata requirements may discourage 

modelers to provide metadata while too little metadata might be insufficient to correctly interpret 

data. Modelers are required to provide the native unit name for each attribute and are 

encouraged to relate the unit with a list of controlled units. Using controlled unit vocabularies 

allows the user to convert values into other units.  

Eighth, controlled vocabularies have the following common fields of term, name, 

category, definition, and URL to a source. This approach is similar to the CVs defined for ODM2 

(Horsburgh et al., 2016). The key CVs attach to Object Types, Attributes, and Instances to 

relate native terms and values across Resource Types. Each resource type (e.g., model) has its 

own native terms. Data of different models can be related using three controlled terms, object 

type (e.g., Reservoir), attribute name (e.g., Volume), and instance name (e.g., Hyrum) (Figure 

4). Units can be converted using constant or linear multipliers. For example, a value of 1.000 

litter has a 0.001 constant fraction in reference to a 1.0 cubic meter volume unit. We adopted 

the list of controlled units from Hydra Platform (Knox, 2018). 

Finally, software business rules (i.e., external code) are used to correctly enforce some 

of the complex relationships in the data model especially when loading data into the database. 

For example, software business rules relate an object type and its typology with Instances 

through a dummy attribute and ensure that each link in the Connections entity has a start and 

end node. Another rule relates a resource type with master network through the 

“NetworkAttributes” object type, the dummy attribute, and a dummy instance to allow modelers 

to query all the network implementations of a resource type. Correctly representing the many-to-

many relationships among the entities within the first six design requirements while attempting 

to achieve parsimony and relatively simple querying consumed a significant portion of the 

iterative WaMDaM designs. We summarize the software business rules on GitHub (Abdallah, 

2018d) 
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Figure 3: WaMDaM logical model tables grouped into the design requirements. Resource Type (#1), Networks and Scenarios 
(#2&3), Metadata (#4), and Data Values (#5). The diagram uses the crow’s foot notation for relationship cardinality and participation. 
An interactive html copy is available at http://schema.wamdam.org/diagrams/01_WaMDaM.html (Abdallah, 2018c). Controlled 
vocabularies tables (#6) are not shown here for simplicity and can be viewed at http://schema.wamdam.org/diagrams/03_CVs.html. 
Each column name (field) that ends with “CV” indicates that the term is a controlled vocabulary.  

  

http://schema.wamdam.org/diagrams/01_WaMDaM.html
http://schema.wamdam.org/diagrams/03_CVs.html
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Figure 4: Relating native names with controlled vocabularies for object types, attributes, 
and instance names allows modelers to query and simultaneously access values across 
native terms. Identical storage are shared among scenarios of the Bear River WEAP Model 
while different storage values in the US Dams Datasets are stored separately. 

 

 

3.3 Physical Model Implementation 

We implemented the logical data model schema within four physical Relational 

Database Management Systems (RDBMS), including PostgreSQL, MySQL, Microsoft SQL 

Server, and SQLite to demonstrate that WaMDaM is independent of the RDBMS (Abdallah, 

2018c).  

First, we selected a physical data type for each field in each logical model entity (e.g., 

integer, varchar) and we imposed physical constraints on each field (e.g., value cannot be null) 

by following the physical data types convention in the ODM2 (Horsburgh et al., 2016). Second, 

we adapted an existing Python 2.7 script developed by Horsburgh et al. (2016) to forward 

engineer a Data Definition Language (DDL) script containing a set of “create” statements for 

WaMDaM tables for each of the four RDBMS. Finally, we executed the DDL script within each 

RDBMS to create a physical blank WaMDaM database that modelers can load with data. 

We chose to express the logical data model as a relational model to: i) support direct 

access to all data and metadata (Requirement #7), ii) be platform independent and implement 

as open-source on different operating systems for different relational database systems 

(Requirement #8), iii) support a standardized and stable Structured Query Language (SQL), and 

iv) follow common use and familiarity with the RDBMS within the water resources community 

(Harou et al., 2010; Horsburgh et al., 2016; Horsburgh et al., 2008; Knox et al., 2014).   
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The core contribution of WaMDaM is the description of a generalized design to help 

organize, join, compare, and analyze multiple water resources datasets and models. Our 

implementation in a relational database is just one way to solve the problem. Other methods, 

such as non-relational databases, also known as NoSQL, are increasingly used worldwide 

(Hoberman, 2014) and could likely satisfy the same use cases. NoSQL implementations may 

scale and adapt without being limited to a schema. Future work should test WaMDaM’s ability to 

scale and adapt to much bigger and more diverse datasets and models. 

 

3.4 Community Feedback on the Design 

We iteratively revised this data model design in five key versions over the course of five 

years to satisfy the design requirements and use cases. The changes were in response to 

feedback from collaborators at the University of Manchester, University of California, Davis, and 

University of Massachusetts, Amherst on WaMDaM design and tools. We acknowledge the 

need for larger and more diverse community testing and feedback to serve a wider audience of 

users. We also incorporated feedback on an earlier design and its description (Abdallah and 

Rosenberg, 2014). The five key designs are available on GitHub (Abdallah, 2018c) 

4. WaMDaM Related Software 

We created software tools to demonstrate WaMDaM’s functionality and allow users to more 

easily interact with its database.  

 

4.1 WaMDaM Wizard 

We developed a WaMDaM Wizard (hereafter the Wizard) in Python 2.7 for SQLite as a 

simplified demonstration to auto-read input data from an Excel Workbook template into a 

physical WaMDaM database implementation on the user’s local machine (Abdallah, 2018d). 

The WaMDaM Wizard uses SQL Alchemy to load data into the database and we use direct SQL 

script to query the database through a Python SQLite3 library. The Wizard provides key 

functionalities of the design and it is just one of many possible ways to import or export data of 

the database. We chose Microsoft Excel as a generic input data medium because modelers 

commonly use it. The Wizard validates entries to comply with the database schema, maps 

primary and foreign keys, and implements software business rules.  

We elected to use SQLite (https://www.sqlite.org/index.html) because it is free, open-

source, and server-less to satisfy open-source design (Requirement #8). We also used the DB 

https://www.sqlite.org/index.html
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Browser for SQLite (https://sqlitebrowser.org/) as an open-source user interface to view tables 

and execute queries against WaMDaM database tables.  

The Wizard has tools to i) prepare and pivot a shapefile, time series, or seasonal data 

into the data structure of the workbook template, ii) import time series stream flow data from 

WaterOneFlow CUAHSI web-services, iii) import time-series WaterML files for reservoir inflow, 

release, storage, elevation from the U.S. Bureau of Reclamation (USBOR) Water Information 

System web service (https://water.usbr.gov/), iv) import network and data stored in WEAP using 

its Application Programming Interface (API) into the workbook template, v) use the provided 

controlled vocabularies in the workbook to register and relate native terms across sources as 

discussed in Section 4.2 , vi) adapt and use the example Jupyter Notebooks to execute data 

query, plots, and analysis across data sources, and serve data into the model, and vii) compare 

and verify differences in topology or input data values across modeling scenarios.  

 

4.2 Controlled vocabulary registry 

We deployed an online-hosted CVs system to physically implement the CVs design 

(Requirement # 6), allow multiple modelers to access, reuse, or suggest new consistent 

vocabularies across WaMDaM database instances and machines. We adapted the existing 

online CV registry system which is a Python/Django web application API developed by the 

ODM2 design team (Horsburgh et al., 2016; Horsburgh et al., 2014) to manage WaMDaM CVs 

(Abdallah, 2018b) (http://vocabulary.wamdam.org).  

Because we adopted the CVs moderation system developed by the ODM2 team, 

modelers have the option to use WaMDaM CVs, submit suggestions to add new terms within 

the online registry, or use their own native terms without registering them to WaMDaM 

controlled vocabulary. We populated the CVs system with example WaMDaM CVs for the 

datasets we worked with and introduce in the next Section. Modelers can use the CVs system 

seamlessly in an Excel Workbook template and the WaMDaM Wizard. Within the Excel 

Workbook template, there is Visual Basic script button that downloads and updates look-up 

menus for all CVs. Excel sheets in the Workbook template contain a column for the native term 

and another as a controlled look-up term that register or relates them together. To get all the 

native terms registered to a controlled term, modelers can write a simple query against their 

local WaMDaM database. 

 

 

https://sqlitebrowser.org/
http://vocabulary.wamdam.org/
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5. Results 

We present five use cases within the Bear River Watershed that help modelers: i) search 

previously-entered datasets in a WaMDaM database for input data to expand a model to a 

larger study area, ii) show the spatial configuration and network connectivity of natural and 

engineered system components, iii) compare retrieved data to help the user decide which data 

to use, and iv) compare changes in network topology, metadata, and data values among 

scenarios. These use cases also support a final common case to v) serve selected data to run a 

WEAP model. These five use cases support common operations that water resources systems 

analysts and modelers perform to develop and use models. 

The use cases apply one optimization and two priority-based simulation models for the 

Bear River study area: 1) the Watershed Area of Suitable Habitat (WASH) model that allocates 

water to maximize watershed habitat areas (Alafifi and Rosenberg, in review), 2) the Bear River 

Systems Dynamic Model (BRSDM) (Sehlke and Jacobson, 2005), and 3) WEAP model. These 

use cases expand coverage for the Lower Bear River to more of the Watershed in Utah, Idaho, 

and Wyoming (light red to darker red in Figure 5). 

The use cases assume a modeler used WaMDaM CVs, Excel templates, and WaMDaM 

Data Wizard to load 13 diverse and overlapping U.S. national, regional, and local data sources 

and models (Table 2) into a WaMDaM SQLite database. The database file is 35 Megabytes 

with 73 ObjectTypes, 563 Attributes, 15,464 Instances, and 214,352 rows in the central 

Mappings table. Readers can use the instructions and Python 2.7 scripts in Jupyter Notebooks 

(Abdallah, 2018a) to load data into the database and replicate queries and figures as well.  

Table 2: Data sources used in WaMDaM use cases 

# Data Source  Instances (#)  File Format  

1 Water Data Exchange (WaDE) Program of the Western States 
Water Council http://wade.westernstateswater.org/ 

2 Excel, (Web-service for time 
series is in progress) 

2 WaterOneFlow Web Services (CUAHSI) 
http://his.cuahsi.org/wofws.html 

1 Web-service, WaterML 

3 U.S. Bureau of Reclamation Water Information system web service 
https://water.usbr.gov 

2 Web-service, WaterML 

4 US Hydropower Dataset (Samu et al., 2017) 2,398 Excel (.xlsx), Shapefile 

5 US Major Dams Dataset (U.S. Geological Survey, 2013) 8,121 Shapefile, text files, HTML 

6 Bear River Commission Flows (Personal Communications, 2016) 1 Excel (.xlsx, .xls), Quattro Pro 
(.QPW) 

7 Utah Dams Dataset (Craig Miller-Personal Communications, 2016) 910 Shapefile, Excel (.xlsx) 

8 Utah Flows Dataset (Craig Miller -Personal Communications, 2016) 893 Shapefile, text file 

9 Idaho Flows Dataset (Liz Cresto-Personal Communications, 2016) 164 Shapefile, Excel 

10 Watershed Area of Suitable Habitat model (WASH) (Alafifi and 
Rosenberg, in review) 

104 Excel (.xlsx), shapefile 

11 Bear River systems Dynamics Model (BRSDM) (Sehlke and 
Jacobson, 2005) 

237 Excel (.xls) 

12 Bear River WEAP Model 2012 for Utah (Rosenberg, 2017) 375 CSV, Paradox Database, 
shapefile 

13 Bear River WEAP Model 2017 for Utah and Idaho (Rosenberg, 2017) 150 CSV, Paradox Database, 
shapefile 

http://his.cuahsi.org/wofws.html
https://water.usbr.gov/
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Figure 5: The Bear River Watershed in the western U.S. The dotted area shows the spatial 
domain of existing WEAP 2012 and WASH models for the Lower Bear River Watershed. Lighter 
red is area for the WEAP 2017 model and dark red is for the Upper Bear River Watershed. 
Symbols show example available data. 

 

Use Case 1: What data entered by others can be used to develop a WEAP water 

supply/demand model for the entire Bear River Watershed?  

Using the populated instance of the WaMDaM database file, the user first specifies the 

resource type to search data (e.g., for WEAP model) and min and max longitudes and latitudes 

of the Upper Bear River Watershed (dark red in Figure 5). Next, the user runs the SQL script to 

identify the available object types and attributes. WaMDaM uses CVs to match native WEAP 

terms with terms from the other 13 loaded data sources. The workflow is readily repeated for a 

second resource type like the WASH model. By excluding categories of water quality and cost 

attributes that are not used in the WEAP 2017 model, the WEAP model has 21 object types with 

71 attributes, while the WASH model has six object types with 61 attributes.  

WaMDaM found six data sources can provide data for the Upper Bear River Watershed 

for five WEAP object types and 15 of their attributes (out of 71 needed attributes; Table 3). 

Here, WaMDaM used the Reservoir CV term to mediate between the 13 datasets to return the 

local native terms “Dam” from the U.S. Dams Dataset and “Reservoir Node” from the BRSDM 
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model. Similarly, the controlled attribute term Volume returns “STORG_ACFT” in the US Major 

Dam’s Dataset, “Capacity” in the Utah Dams Dataset, and “Max Storage Capacity” in the 

BRSDM model for the WEAP attribute “Storage Capacity”. To expand the Lower Bear WASH 

Model, WaMDaM finds six data sources can provide data for six attributes for demand site and 

reservoir object types. Data is still needed for 55 attributes. One reason for this mismatch is that 

the WASH model uses many ecologic parameters that do not have analogues in the other data 

sources.  

This use case demonstrates that the same WaMDaM data search method can be 

applied to multiple models. Loading more diverse datasets into WaMDaM, such as water right 

priority to demand sites that are required by WEAP, would allow WaMDaM to identify more data 

for models.   

 

Table 3: Summary of the identified attributes and node and link instances in WaMDaM 
database to expand the Bear River WEAP Model 2017 to the entire Bear River Watershed.  

Object Types WEAP Attributes with Data Instances (#) Resource Type  

Reservoir Inflow, Initial Storage, Max. Turbine 
Flow, Net Evaporation, Observed, 
Volume, Storage Capacity, Top of 
Inactive, Volume Elevation Curve 

SULPHUR CREEK, Woodruff Narrows 
Reservoir, Node 2.02, Node 6.01, 
Neponset Reservoir, …, Whitney 
Reservoir (34) 

US Dams, Utah 

Dams, BRSDM 

Demand site Annual Activity Level, Annual Water 
Use Rate, Consumption, Monthly 
Demand 

Node 1.02, Node 1.02, Bear River 
Watershed ag, Bear River Watershed I, 
Bear River Watershed M (4) 

WaDE and BRSDM 

Flow Requirement Minimum Flow Requirement Node 1.02 (1) BRSDM 

Gauge streamflow  Streamflow Data BEAR RIVER AT BORDER, WY, BEAR 
RIVER NEAR UTAH-WYOMING STATE 
LINE (2) 

Idaho Flows dataset, 

CUAHSI 

Transmission link Maximum Flow Volume NUFFER, RIGBY, SORENSEN, 
WILLIAMSON (JENSEN) (4) 

Idaho Flows dataset 

 

Use Case 2: Which network connectivity should be used in a model?  

After identifying types of data that describe water systems components, modelers must 

determine how water supply, demand, and other system components are connected to correctly 

represent modeled system components. Here, CVs, node connectivity, and links help modelers 

visualize network connectivity and select an appropriate network for a model scenario. We focus 

the use case on Hyrum Reservoir which is located on the Little Bear River in Utah. 

We used SQL to query all links connected to Hyrum Reservoir in the WaMDaM 

database and then sort them by data source (i.e., model). Next, we used Microsoft Visio to draw 

query results which show Hyrum Reservoir supplies two demand sites in the Bear River WEAP 

Model 2012 (Figure 6-A) and three different demand sites in each of the Bear River WEAP 

Model 2017 and WASH models (Figure 6). The latter two models also return flow back to 

Hyrum Reservoir. The WASH Model has the same schematic as the Bear River WEAP Model 
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2017 model but uses different labels for its nodes and links (Figure 6-C). Using its source and 

methods metadata, the Bear River WEAP Model 2017 model in this area seems to be the most 

updated and detailed network, so we recommend using the Bear River WEAP Model 2017 

model to expand coverage to the Upper Bear River (Figure 6-B).  

 

 
Figure 6: Node-link schematics for flows entering/leaving Hyrum Reservoir for three models in 
the Lower Bear River Watershed, Utah. Arrows indicate direction of flow. Nodes and links with 
the same color and shape belong to same controlled object type across models. 

 

Use Case 3: How do data values differ across datasets and which value to choose for a model?  

Once modelers have identified the types of data available for a modeling study and the 

model network, they must choose the data sources and values to use for network components. 

Here, WaMDaM’s multiple attribute data types (e.g., time series, seasonal parameters), CVs, 

direct access, and metadata design requirements can help modelers compare datasets, put 

context to values, and select the appropriate value for a modeling application. We illustrate this 

process using a subset of the data identified in the first use case for 1) time series and seasonal 

streamflow below Stewart Dam, Idaho, 2) water use in Cache Valley, Utah, and 3) storage 

elevation curves (i.e., bathymetry) for Hyrum Reservoir in Utah.  

 

Use Case 3.1: What water supply flow values should a modeler choose at a site (e.g., below 

Steward Dam)?  

Reusing the query for use case 1, controlled vocabulary for the instance and attribute 

names, and shifting the water year time reference, we identified four data sources with flow data 

for the site below Stewart Dam in Idaho. The datasets are the USGS, the Utah Division of Water 

Resources (UDWR), Idaho Department of Water Resources (IDWR), and the Bear River 

Commission (Figure 7: A). We used a second SQL query to aggregate and convert all the time 

series datasets into a comparable cumulative monthly flow in acre-feet per calendar year. The 
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query used the time series metadata of attribute unit, year type, aggregation statistic, and 

aggregation interval to automate conversions. The four resulting traces span 92 years from 

1923-2015 and show data values from the four sources are typically identical except for a few 

discrepancies in 1996 and 1999 (circles in Figure 7: B). The source and methods metadata 

show that the data originates from stream gage data collected by the PacifiCorp power 

company. PacifiCorp shares raw data (not available to the authors) with each state. The states 

interpolate missing data points. We recommend using the UDWR dataset which has the longest 

available record and documented metadata.  

 
==    

 
 

Figure 7: Compiled time series data of flow below Stewart Dam, Idaho reported by different 
agencies over time. (A) 1923 to 2015 and (B) a six-year window that highlights similarities and 
discrepancies (B-1 and B2) among sources after converting the water year into calendar year.  

 

Water management models like WEAP also use seasonal (i.e., average monthly) flow 

data and modelers need to choose appropriate datasets for them. The same query above also 

returned seasonal data from a fifth source, the BRSDM model, which has three scenarios for 

monthly flow (dry, normal, and wet) for the same Stewart Dam site (Figure 8-A). The BRSDM 

materials did not document how seasonal monthly values were derived. However, by comparing 

seasonal values to June high flow values (UDWR data from 1923 to 2015), we estimated the 

observed flow is lower 48% of the time than the dry June flow value of 666 acre-ft/month. We 

also found the observed flow is higher about 5% of the time than the wet June seasonal flow 

value of 17,187 acre-ft/month (Figure 8-B). These BRSDM model flow values do not capture 

dry and wet seasons evenly. Thus, we recommend that modelers use newly derived and more 

representative flow-frequencies from the UDWR dataset like the 5, 50, 95 percentiles which are 

184, 702, and 24,900 acre-ft/month for dry, normal, and wet June months.  

 

A B 

B-1 

B-2 
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Figure 8: Relating dry, normal, and wet year scenario flows below Stewart Dam, Idaho in 
BRSDM model (A) to cumulative distribution defined by 91 years of UDWR flow records (B). 

 

Use Case 3.2: What agriculture water use data should a modeler choose for a demand site? 

Systems models often require data for agriculture, and other water uses, which might be 

derived or estimated. Here, we use CVs, metadata, and multiple attribute data types to query, 

aggregate, and compare multiple resource types (data sources) for agriculture water use in 

Cache County in the Lower Bear River, Utah and recommend data to use in a WEAP model. 

The query used the controlled term diverted flow and returned data from three datasets: WASH 

model scenarios, WEAP model scenarios, and the WaDE web-service source. The Bear River 

WEAP Model 2017 uses seasonal demand data for eight sites and annual demand for two sites. 

Besides the diverted flow-controlled term, using another controlled term, called “depleted flow”, 

returned a fifth time series form the WaDE source which distinguishes the types of demand 

(dashed line in Figure 9).  

We used the source and method descriptions for attributes, node instances, and 

scenarios to identify how the data sources represent water use in spatial and time extents. Data 

either represent i) the entire county area annually in one node as diverted or depleted water like 

the WaDE dataset (two curves), ii) the entire county seasonally and annually across eight 

demand sites (WEAP Model 2017), iii) part of the county monthly in one or seven sites as in the 

Bear River WEAP Model 2012 and WASH models, respectively. The reported annual water use 

data in WaDE is close to and validates the annual water demand values for the Cache Valley as 

used in the Bear River WEAP Model 2017. We recommend modelers to use the WaDE 

“Diversions” data which are annually reported by all water irrigation users in Cache County 

compared to using demand data that are constant across the years or covers part of Cache 

County. Here WEAP accepts input data with daily, monthly, seasonal, and annual spacing and 

aggregates or disaggregates them into the model’s time step.  

A B 
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Figure 9: Water demand in Cache County, Utah by source with native attribute term in quotes.  
  

 

Use Case 3.3: What reservoir volume-elevation curve should a modeler choose for a model? 

Modelers also search for data describing multi-attribute series such as reservoir 

bathymetry (elevation versus storage) to represent the physical capacity of reservoirs in their 

models. Here, we use the controlled instance name of Hyrum Reservoir and controlled attribute 

names Volume and Elevation to identify four volume-elevation curves for Hyrum Reservoir from 

the USBOR, Utah Dams, and WEAP model datasets. The USBOR Water Info System dataset 

has two time series datasets for storage and elevation, which have the same daily time step 

from January 2010 to May 2017. We plotted both series (Figure 10) and used the WaMDaM 

CVs, metadata, and multiple data types to readily identify and compare multi-attribute 

bathymetry curves across data sources that had different semantics, measurement periods, and 

extrapolated versus measured methods. Metadata and semantics are valuable here as 

misrepresenting the total or live storage or using an old survey could over or under estimate 

water available to meet demand targets, especially in dry years.  

Metadata indicate the four curves originate from two sources: the Utah Dams set and 

USBOR who owns the dam. The Bear River WEAP model used an older curve from the UDWR, 

while Utah Dams and USBOR datasets used USBOR source. Here we report the following three 

comparison insights, which are related to semantics, the range of data, and date of 
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measurement. First, the top two red curves in Figure 10 indicate “live storage” which does not 

account for “dead storage,” while the lower two brown curves reflect “total storage.” The 

percentage of total storage that is dead storage is relatively high, about 17% in this small 

reservoir. Second, the slight differences between the two identical lower curves and the top 

curve are for two bathymetry surveys in 1935 and 2006, respectively. Between the two surveys, 

total storage decreased by 1,179 acre-feet which is 6% of the original storage due to a decrease 

in both the dead and live storage potential. Third, the lower brown curve has physical range that 

extend up to 70,000 acre-feet volume and 4,750 feet elevation (not shown) for a future scenario 

that raised the dam height. From the comparative analysis and metadata, we select the BOR 

2006 curve which is for the recent bathymetry survey, used total storage as needed by WEAP, 

and stayed within the existing operational range of the reservoir. 

 

 
Figure 10: Four volume-elevation curves for Hyrum Reservoir, Utah. Lighter red and brown 
curves indicate larger volumes at the same elevation. Dead, Live, and Total storage zones are 
from the 2006 USBOR survey. 
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Use Case 4: What are the differences between two scenarios and which scenario should a 

modeler use?  

Modelers use scenarios to evaluate how potential management alternatives can affect 

system performance. However, scenarios typically have numerous attributes and inputs and it is 

often difficult to determine the differences in nodes and links, data values, or data sources 

between multiple scenarios. Here we use the WaMDaM master network, scenario requirement, 

CVs, and the WaMDaM Wizard Data Loader comparison utility to help a modeler identify 

differences between existing scenarios in a model. The Wizard executes a script that queries 

the ScenarioMappings table and identifies the data that is shared among and unique to each 

scenario. Comparison results are exported to an Excel Workbook.  

For example, the Bear River WEAP Model 2012 (Utah portion) and Bear River WEAP 

Model 2017 (Utah and Idaho portions) model scenarios share about 12% of the network node 

and link instances, 22% network metadata, 14% attribute metadata, and 14 % data (Table 4). 

Similarly, the BRSDM dry, normal, and wet scenarios have identical master network and 

metadata for the Wyoming portion of the Bear River Watershed and share about 93% of data 

like demand requirements with 3.5% unique values to each scenario, such as change in 

headflows (Appendix A Table A4). The larger percentage of shared elements among the 

BRSDM model scenarios means a correspondingly larger savings in database storage than the 

WEAP model scenarios.  

Because the Bear River WEAP Model 2017 model scenario has more node and link 

elements, metadata, attributes, and data values, we recommend using this model scenario as a 

starting point to expand coverage to the entire Watershed to include the Wyoming (dark red in 

Figure 5). The BRSDM model network covers the Upper Bear River in which can be used as a 

source to expand the WEAP Bear River WEAP Model 2017 to the entire Watershed.  

 

Table 4: Unique and shared network nodes and links, metadata (source and method) and data 

between two WEAP Bear River Watershed model scenarios 

Scenario comparison 

element  

Unique to “Bear River 

WEAP Model 2012” 

Scenario  

Count of instances (%) 

Shared  

Count of 

instances (%) 

Unique to “Bear River 

WEAP Model 2017” 

Scenario 

Count of instances (%) 

Network nodes and links 88 (23.5%) 45 (12%) 242 (64.5%) 

Network metadata 88 (20.85%) 92 (21.81%) 242 (57.35%) 

Attributes metadata  1,225 (26.5%) 654 (14.15%) 2,743 (59.35%) 

Data  1,230 (26.61%) 696 (13.93 %) 2,748 (59.45%) 
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Use Case 5: How do annual water shortages at the Bear River Migratory Bird Refuge in the 

Bear River Watershed change when serving the Bear River WEAP Model 2017 model with new 

bathymetry, flow, and demand data selected in use cases 2 and 3?  

We selected the Bear River Migratory Bird Refuge (hereafter, the Bird Refuge) at the 

mouth of Bear River as an environmental demand site to test the sensitivity of water shortages 

to changes in input of upstream supply, demand, and storage identified in use cases 2 and 3. 

The site has an annual 425,761 acre-feet water delivery target that is primarily required in the 

winter months. The WaMDaM CVs, consistent data storage, and query method enabled 

selecting the 1) dry seasonal headflow estimates for the Bear River at Stewart Dam that we 

derived from the UDWR dataset, 2) total maximum annual demand as reported by the WaDE 

dataset for the entire Cache County, and 3) bathymetry curve for Hyrum Reservoir from the 

USBOR dataset. We then used a Python 2.7 script in a local Jupyter Notebook and the WEAP 

API to export the selected data and populate data automatically in the Bear River WEAP Model 

2017. This setup also allowed us to automate the process to create a WEAP scenario for each 

parameter change, execute the model, and report results for annual unmet demand (shortage) 

at the Bird Refuge. Each WEAP model run included the simulation period 1966 to 2006.  

The modeled annual unmet demand ranged from 0% in wet years to up to 15% of total 

demand in dry years across the four scenarios (Figure 11). Updating Hyrum Reservoir with the 

new bathymetry (1,179 acre-feet less storage, 6% of capacity) had no observable effect on the 

annual unmet demand. The average annual unmet demand increased to 1.9% and 2.6% of total 

demand with higher upstream Cache County irrigation demand and updated headflows for dry 

years.  
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Figure 11: Sensitivity of annual unmet demand at the Bird Refuge, Utah over the simulation 
period 1966-2006 to changes in upstream storage capacity, demand, and supplies (mean 
values are in dash lines) 

 

6. Discussion and Further Work 

WaMDaM’s eight design requirements of modular and extensible components, networks 

of nodes and links, scenarios, reusable contextual metadata, support for seven data types, 

extensible controlled vocabularies, direct access to data, and an open-source environment 

improve prior work that focused on managing water management data for a single model or 

dataset and select systems modeling data types (Horsburgh et al., 2016; Knox et al., 2014). 

Here we discuss how modelers can use WaMDaM, list limitations of the work, present future 

work, and invite the community to get involved and provide feedback. 

 

6.1 How can modelers use WaMDaM database and its software? 

We show how researchers of five recently published systems modeling studies can use 

WaMDaM tools to organize, relate, and analyze input data, networks, and scenarios. For 

example, Ahmadaali et al. (2018) used WEAP to evaluate economic aspects of proposed water 

management strategies in Urmia Lake, Iran while Angarita et al. (2018) also used WEAP to 

examine 97 proposed hydropower facilities within a total of 1400 scenarios in the Magdalena 

River basin, Colombia. Both projects can use the WEAP importer in WaMDaM Wizard to 

manage the WEAP networks and compare input data for current and future scenarios.  
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Dogan et al. (2018) developed an open-source version of the California Value Integrated 

Network (CALVIN) model and separate the model from model data which is stored in a large 

number of CSV and JSON files in a structured GitHub repository. The researchers could use the 

WaMDaM Wizard to load input data into the WaMDaM database and compare the input data for 

different models runs such as for 10 and 40 years’ time spans. Wheeler et al. (2018) developed 

a systems optimization model to identify cooperative management strategies for the large 

reservoirs on the Eastern Nile Basin. The researchers could use WaMDaM and its scenario 

comparison tool to track different projected climate change flows for the Nile Basin. Finally, 

Chini et al. (2018) created a network of virtual water flows for the US electric grid based on six 

years of empirical data on water use and electricity transfers. The authors could use WaMDaM 

to store the created network and its disparate water and energy datasets. WaMDaM can be 

especially useful to manage the data for the proposed analysis to assess regional 

interdependencies on a seasonal scale. For each of these studies, storing the modeling data in 

WaMDaM with its defined schema will allow other researchers to query and reuse data in other 

studies. This reuse could further increase each study’s impact. 

 

6.2 Current limitations 

WaMDaM supports numerical, seasonal, categorical, free text, time series, multi-

attribute series, and electronic file formats. WaMDaM however does not support gridded data 

since gridded data are not common to the water resources models we reviewed. The WaMDaM 

design is implemented in a relational schema which has limitations to adapt and scale 

compared to NoSQL. The WaMDaM tools help users interact with its SQLite database installed 

on one machine with no distributed access compared to database servers with API. These 

software tools are prototypes that are tested using the study datasets on Windows machines. 

The WaMDaM Wizard is slow to load and validate large datasets.   

 

6.3 Future Work 

To improve access and security, future WaMDaM implementations should build web-

server APIs with data query functions that distribute and manage the access to many users at 

the same time and protect the database integrity from unintended changes. Future software 

tools to load data to the database and export it to models should be time-efficient, more user-

friendly, and compatible with Windows, Mac, and Linux. To support more use cases, future work 

should involve a larger number of diverse datasets, models, and research groups. Future work 

also should use WaMDaM and web-services to publish, discover, and visualize models and 
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their data and allow multiple users to work with the same datasets. Additionally, future work 

could leverage scenario and attribute metadata to test use cases that convert data in one time 

step to other time steps. 

In response to earlier feedback, we are collaborating to build a software ecosystem to 

make WaMDaM interoperable with Hydra Platform web-services (Knox et al., 2014), OpenAgua 

(Rheinheimer, 2018), and HydroShare. The ecosystem tools will allow WaMDaM users to import 

data stored in Hydra Platform as a new source of data. Users will also be able to export 

WaMDaM data into Hydra Platform and visualize networks and their data in OpenAgua. We are 

also integrating WaMDaM as a new HydroShare resource type to publish populated WaMDaM 

SQLite files and extract their metadata to enable search and discovery (Horsburgh et al., 2015). 

Lastly, we are developing workflows to automate the steps to prepare and export all the data 

needed to run multiple models. These workflows will more readily allow modelers to use the 

same datasets to run multiple comparison models for the same study domain (e.g., simulation 

vs optimization) or different spatial domains (e.g. Bear River vs. Colorado River). These tasks 

are now difficult because the modeler must manually build two (or more) models from scratch.  

 

6.4 Invitation to community involvement and feedback  

Over the past five years, we sought and received feedback from colleagues and 

collaborators on the WaMDaM design and tools. There is still need for testing and feedback 

from a larger, more diverse community of users. In all these efforts, we seek community 

involvement to 1) add new datasets and models for new locations, 2) build new exporters to 

serve data to new models, and 3) further define the system of controlled vocabulary that can 

help relate native vocabulary of existing models and datasets. More involvement can benefit a 

variety of people who work with systems simulation and optimization data and models. 

WaMDaM can serve as a first step toward a standardized method to store, organize, and share 

water resources systems modeling data. 

7. Conclusions 

This paper addressed the problem of needing multiple methods to organize, store, 

query, and analyze water management data to identify input data to develop or extend a water 

management model. We contributed a new data model (WaMDaM) implemented in a relational 

database to organize water management data with contextual metadata and controlled 

vocabularies to generalize data analysis for multiple data sources, models, and study areas.  

file:///C:/Users/Rosenberg/Downloads/can
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The design of WaMDaM integrated eight design requirements that were previously only 

partially supported by forty prior water resources data systems, models, and standards. The 

requirements include: 1) modular and extensible components, 2) networks of nodes and links, 

3) scenarios and version control, 4) reusable contextual metadata, 5) support for multiple data 

types used by systems models, 6) extensible controlled vocabularies, 7) direct access to 

subsets of data and metadata, and 8) an open-source environment.  

We demonstrated the WaMDaM design by using 13 datasets and models to answer five 

use case questions in the Bear River Watershed, United States. The use cases allowed 

modelers to: i) search for input data within a model study area, ii) identify flow directions and 

connections among natural and engineered system components, iii) identify and compare water 

supply, demand, and reservoir data across multiple datasets and models, iv) show data 

similarities and differences among modeling scenarios, and v) select data, serve the data to a 

model, and run multiple model scenarios.   

Results showed how WaMDaM unifies data formats, structures, and controlled 

vocabulary identified data for 15 attributes (out of 71 needed) from six data sources to expand 

the spatial extent of a WEAP model. Results also showed discrepancies in river discharge data, 

demand, and reservoir area-elevation curves. Results helped select input data and develop 

multiple scenarios. Serving the data to run an existing WEAP model revealed and quantified 

that shortages at an environmental demand site were sensitive to changes in upstream 

agricultural water demand and headflows but not reservoir capacity.   

The WEAP API and SQL make it possible for users to use WaMDaM to set up 

scenarios, replicate, and extend the work. WaMDaM facilitates these data wrangling tasks by 

reconciling the disparate datasets into a homogenous structure and by using controlled 

vocabularies to relate the different native terms across datasets. Modelers can then spend more 

time on data analysis and synthesis than on time consuming and error-prone steps to 

manipulate data to set up and run a model. 

In further work, we are collaborating on a software ecosystem to make WaMDaM 

interoperable with Hydra Platform and OpenAgua to visualize networks and their data. We are 

also developing workflows to automate the steps to serve the same input data already 

organized in WaMDaM to multiple comparison models for a study area. We also seek 

community involvement to load larger and more diverse data and model sets which will allow 

others to reuse data and build models in new areas. These expansions will require more robust 

methods to define, relate, specify, and expand controlled vocabularies for water management 
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data. We invite the systems modeling and hydroinformatics communities to provide feedback to 

improve WaMDaM.  
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