22 research outputs found

    Compact high order schemes for the Euler equations

    Get PDF
    An implicit approximate factorization (AF) algorithm is constructed which has the following characteistics. In 2-D: The scheme is unconditionally stable, has a 3 x 3 stencil and at steady state has a fourth order spatial accuracy. The temporal evolution is time accurate either to first or second order through choice of parameter. In 3-D: The scheme has almost the same properties as in 2-D except that it is now only conditionally stable, with the stability condition (the CFL number) being dependent on the cell aspect ratios, delta y/delta x and delta z/delta x. The stencil is still compact and fourth order accuracy at steady state is maintained. Numerical experiments on a 2-D shock-reflection problem show the expected improvement over lower order schemes, not only in accuracy (measured by the L sub 2 error) but also in the dispersion. It is also shown how the same technique is immediately extendable to Runge-Kutta type schemes resulting in improved stability in addition to the enhanced accuracy

    Spurious frequencies as a result of numerical boundary treatments

    Get PDF
    The stability theory for finite difference Initial Boundary-Value approximations to systems of hyperbolic partial differential equations states that the exclusion of eigenvalues and generalized eigenvalues is a sufficient condition for stability. The theory, however, does not discuss the nature of numerical approximations in the presence of such eigenvalues. In fact, as was shown previously, for the problem of vortex shedding by a 2-D cylinder in subsonic flow, stating boundary conditions in terms of the primitive (non-characteristic) variables may lead to such eigenvalues, causing perturbations that decay slowly in space and remain periodic time. Characteristic formulation of the boundary conditions avoided this problem. A more systematic study of the behavior of the (linearized) one-dimensional gas dynamic equations under various sets of oscillation-inducing legal boundary conditions is reported

    Splitting methods for low Mach number Euler and Navier-Stokes equations

    Get PDF
    Examined are some splitting techniques for low Mach number Euler flows. Shortcomings of some of the proposed methods are pointed out and an explanation for their inadequacy suggested. A symmetric splitting for both the Euler and Navier-Stokes equations is then presented which removes the stiffness of these equations when the Mach number is small. The splitting is shown to be stable

    Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    Get PDF
    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach

    The stability of numerical boundary treatments for compact high-order finite-difference schemes

    Get PDF
    The stability characteristics of various compact fourth and sixth order spatial operators are assessed using the theory of Gustafsson, Kreiss and Sundstrom (G-K-S) for the semi-discrete Initial Boundary Value Problem (IBVP). These results are then generalized to the fully discrete case using a recently developed theory of Kreiss. In all cases, favorable comparisons are obtained between the G-K-S theory, eigenvalue determination, and numerical simulation. The conventional definition of stability is then sharpened to include only those spatial discretizations that are asymptotically stable. It is shown that many of the higher order schemes which are G-K-S stable are not asymptotically stable. A series of compact fourth and sixth order schemes, which are both asymptotically and G-K-S stable for the scalar case, are then developed

    Bounded Error Schemes for the Wave Equation on Complex Domains

    Get PDF
    This paper considers the application of the method of boundary penalty terms ("SAT") to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude in the level of the L2-error

    Secondary frequencies in the wake of a circular cylinder with vortex shedding

    Get PDF
    A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers was conducted using three different numerical algorithms for solving the time-dependent compressible Navier-Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well-predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behavior

    Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets

    Get PDF
    We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness

    The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    Get PDF
    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach

    Analysis of cardiac signals using spatial filling index and time-frequency domain

    Get PDF
    BACKGROUND: Analysis of heart rate variation (HRV) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system (ANS). HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is strenuous and time consuming. METHODS: This paper presents the spatial filling index and time-frequency analysis of heart rate variability signal for disease identification. Renyi's entropy is evaluated for the signal in the Wigner-Ville and Continuous Wavelet Transformation (CWT) domain. RESULTS: This Renyi's entropy gives lower 'p' value for scalogram than Wigner-Ville distribution and also, the contours of scalogram visually show the features of the diseases. And in the time-frequency analysis, the Renyi's entropy gives better result for scalogram than the Wigner-Ville distribution. CONCLUSION: Spatial filling index and Renyi's entropy has distinct regions for various diseases with an accuracy of more than 95%
    corecore