96 research outputs found

    Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials

    Get PDF
    Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by one to two orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity as compared to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, then impregnating the powdered mixture with radical solution leads to further four-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor 9 improvement in NMR sensitivity as compared to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si and Cd3P2 NPs. These experiments allow NMR signals from the surface, sub-surface and core sites to be observed and assigned. For example, we demonstrate that the acquisition of DNP-enhanced 2D 113Cd113Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D 13C29Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures

    Alu fossil relics - distribution and insertion polymorphism

    Get PDF
    Screening of a human genomic library with an oligonucleotide probe specific for one of the young subfamilies of Alu repeats (Ya5/8) resulted in the identification of several hundred positive clones. Thirty-three of these clones were analyzed in detail by DNA sequencing. Oligonucleotide primers complementary to the unique sequence regions flanking each Alu repeat were used in PCR-based assays to perform phylogenetic analyses, chromosomal localization, and insertion polymorphism analyses within different human population groups. All 33 Alu repeats were present only in humans and absent from orthologous positions in several nonhuman primate genomes. Seven Alu repeats were polymorphic for their presence/absence in three different human population groups, making them novel identical-by-descent markers for the analysis of human genetic diversity and evolution. Nucleotide sequence analysis of the polymorphic Alu repeats showed an extremely low nucleotide diversity compared with the subfamily consensus sequence with an average age of 1.63 million years old. The young Alu insertions do not appear to accumulate preferentially on any individual human chromosome

    Brain charts for the human lifespan

    Get PDF
    Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual diferences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantifed by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identifed previously unreported neurodevelo pmental milestones3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological diferences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantifcation of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes

    Identification and characterization of two polymorphic Ya5 Alu repeats

    Get PDF
    Two new polymorphic Alu elements (HS2.25 and HS4.14) belonging to the young (Ya5/8) subfamily of human-specific Alu repeats have been identified. DNA sequence analysis of both Alu repeats revealed that each Alu repeat had a long 3\u27-oligo-dA-rich tail (41 and 52 nucleotides in length) and a low level of random mutations. HS2.25 and HS4.14 were flanked by short precise direct repeats of 8 and 14 nucleotides in length, respectively. HS2.25 was located on human chromosome 13, and HS4.14 on chromosome 1. Both Alu elements were absent from the orthologous positions within the genomes of non-human primates, and were highly polymorphic in a survey of twelve geographically diverse human groups

    N plus 2 Supersonic Concept Development and Systems Integration

    Get PDF
    Supersonic airplanes for two generations into the future (N+2, 2020-2025 EIS) were designed: the 100 passenger 765-072B, and the 30 passenger 765-076E. Both achieve a trans-Atlantic range of about 4000nm. The larger 765-072B meets fuel burn and emissions goals forecast for the 2025 time-frame, and the smaller 765-076E improves the boom and confidence in utilization that accompanies lower seat count. The boom level of both airplanes was reduced until balanced with performance. The final configuration product is two "realistic", non-proprietary future airplane designs, described in sufficient detail for subsequent multi-disciplinary design and optimization, with emphasis on the smaller 765-076E because of its lower boom characteristics. In addition IGES CAD files of the OML lofts of the two example configurations, a non-proprietary parametric engine model, and a first-cycle Finite Element Model are also provided for use in future multi-disciplinary analysis, optimization, and technology evaluation studies

    Intermetallic Nanocatalysts from Heterobimetallic Group 10–14 Pyridine-2-thiolate Precursors

    Get PDF
    Intermetallic compounds are atomically ordered inorganic materials containing two or more transition metals and main-group elements in unique crystal structures. Intermetallics based on group 10 and group 14 metals have shown enhanced activity, selectivity, and durability in comparison to simple metals and alloys in many catalytic reactions. While high-temperature solid-state methods to prepare intermetallic compounds exist, softer synthetic methods can provide key advantages, such as enabling the preparation of metastable phases or of smaller particles with increased surface areas for catalysis. Here, we study a generalized family of heterobimetallic precursors to binary intermetallics, each containing a group 10 metal and a group 14 tetrel bonded together and supported by pincer-like pyridine-2-thiolate ligands. Upon thermal decomposition, these heterobimetallic complexes form 10–14 binary intermetallic nanocrystals. Experiments and density functional theory (DFT) computations help in better understanding the reactivity of these precursors toward the synthesis of specific intermetallic binary phases. Using Pd2Sn as an example, we demonstrate that nanoparticles made in this way can act as uniquely selective catalysts for the reduction of nitroarenes to azoxyarenes, which highlights the utility of the intermetallics made by our method. Employing heterobimetallic pincer complexes as precursors toward binary nanocrystals and other metal-rich intermetallics provides opportunities to explore the fundamental chemistry and applications of these materials

    Revealing the Surface Structure of CdSe Nanocrystals by Dynamic Nuclear Polarization-Enhanced 77Se and 113Cd Solid-State NMR Spectroscopy

    Get PDF
    Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies and which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain from DNP enabled natural isotopic abundance 2D homonuclear 113Cd-113Cd and 77Se-77Se and heteronuclear 113Cd-77Se scalar correlation solid-state NMR experiments that reveal the connectivity of the Cd and Se atoms. Importantly, 77Se{113Cd} scalar heteronuclear multiple quantum coherence (J-HMQC) experiments were used to selectively measure one-bond 77Se-113Cd scalar coupling constants (1J(77Se, 113Cd)). With knowledge of 1J(77Se, 113Cd), heteronuclear 77Se{113Cd} spin echo (J-resolved) NMR experiments were then used to determine the number of Cd atoms bonded to Se atoms and vice versa. The J-resolved experiments directly confirmed that major Cd and Se surface species have CdSe2O2 and SeCd4 stoichiometries, respectively. Considering the crystal structure of zinc blende CdSe, and the similarity of the solid-state NMR data for the platelets and spheroids, we conclude that the surface of the spheroidal CdSe NCs is primarily composed of {100} facets. The methods outlined here will generally be applicable to obtain detailed surface structures of various main group semiconductors

    RAD51C Germline Mutations in Breast and Ovarian Cancer Cases from High-Risk Families

    Get PDF
    BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5′ UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene
    • …
    corecore