157 research outputs found

    Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration

    Get PDF
    Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a 'novel substrate' which may be used in future landscape restoration. However, these post-mining substrate based 'soils' are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management

    A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Symbiobacterium toebii </it>is a commensal symbiotic thermophile that absolutely requires its partner bacterium <it>Geobacillus toebii </it>for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of <it>Symbiobacterium </it>remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of <it>S. toebii </it>using different cell-free extracts of <it>G. toebii</it>.</p> <p>Results</p> <p><it>Symbiobacterium toebii </it>growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in <it>G. toebii</it>, indicating that the factor may be essential components for growth of <it>G. toebii </it>as well as <it>S. toebii</it>. The growing conditions of <it>G. toebii </it>under different oxygen tension dramatically affected to the initial growth of <it>S. toebii </it>and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium <it>S. toebii </it>with a facultative aerobic bacterium <it>G. toebii</it>. In addition, the growth curve of <it>S. toebii </it>showed a dependency on the protein concentration of cell-free extracts of <it>G. toebii</it>, demonstrating that the <it>G. toebii</it>-derived factors have nutrient-like characters but not quorum-sensing characters.</p> <p>Conclusions</p> <p>Not only the consistent existence of the factor in <it>G. toebii </it>during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of <it>S. toebii</it>, suggests that an important biosynthetic machinery lacks in <it>S. toebii </it>during evolution. The commensal symbiotic bacterium, <it>S. toebii </it>uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, <it>G. toebii </it>grown under aerobic condition shortened the lag phase of <it>S. toebii </it>under anaerobic and microaerobic conditions, suggests a possible commensal interaction that <it>G. toebii </it>scavengers ROS/RNS species and helps the initial growth of <it>S. toebii</it>.</p

    Immunogenicity of Therapeutic Proteins: The Use of Animal Models

    Get PDF
    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far

    Novel Allelic Variants in the Canine Cyclooxgenase-2 (Cox-2) Promoter Are Associated with Renal Dysplasia in Dogs

    Get PDF
    Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs

    Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    Get PDF
    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission

    Human oral viruses are personal, persistent and gender-consistent.

    Get PDF
    Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem

    Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Get PDF
    <div><h3>Background</h3><p>Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized <em>in vitro</em>, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for <em>in vitro</em> temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.</p> <h3>Methodology/Principal Findings</h3><p>Supragingival plaque samples from caries-free children incubated with <sup>13</sup>C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by <em>Lactobacillus</em> and <em>Propionibacterium</em> species, both of which have been previously found within carious lesions from children.</p> <h3>Conclusions/Significance</h3><p>Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.</p> </div

    Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific

    Get PDF
    The potential for siderophore mutants of Pseudomonas aeruginosa to attenuate virulence during infection, and the possibility of exploiting this for clinical ends, have attracted much discussion. This has largely been based on the results of in vitro experiments conducted in iron-limited growth medium, in which siderophore mutants act as social ‘cheats:’ increasing in frequency at the expense of the wild type to result in low-productivity, low-virulence populations dominated by mutants. We show that insights from in vitro experiments cannot necessarily be transferred to infection contexts. First, most published experiments use an undefined siderophore mutant. Whole-genome sequencing of this strain revealed a range of mutations affecting phenotypes other than siderophore production. Second, iron-limited medium provides a very different environment from that encountered in chronic infections. We conducted cheating assays using defined siderophore deletion mutants, in conditions designed to model infected fluids and tissue in cystic fibrosis lung infection and non-healing wounds. Depending on the environment, siderophore loss led to cheating, simple fitness defects, or no fitness effect at all. Our results show that it is crucial to develop defined in vitro models in order to predict whether siderophores are social, cheatable and suitable for clinical exploitation in specific infection contexts
    corecore