102 research outputs found

    Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor.</p> <p>Methods</p> <p>Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given.</p> <p>Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting.</p> <p>Results</p> <p>Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples.</p> <p>Conclusion</p> <p>Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.</p

    Proteomic Analyses Reveal High Expression of Decorin and Endoplasmin (HSP90B1) Are Associated with Breast Cancer Metastasis and Decreased Survival

    Get PDF
    BACKGROUND: Breast cancer is the most common malignancy among women worldwide in terms of incidence and mortality. About 10% of North American women will be diagnosed with breast cancer during their lifetime and 20% of those will die of the disease. Breast cancer is a heterogeneous disease and biomarkers able to correctly classify patients into prognostic groups are needed to better tailor treatment options and improve outcomes. One powerful method used for biomarker discovery is sample screening with mass spectrometry, as it allows direct comparison of protein expression between normal and pathological states. The purpose of this study was to use a systematic and objective method to identify biomarkers with possible prognostic value in breast cancer patients, particularly in identifying cases most likely to have lymph node metastasis and to validate their prognostic ability using breast cancer tissue microarrays. METHODS AND FINDINGS: Differential proteomic analyses were employed to identify candidate biomarkers in primary breast cancer patients. These analyses identified decorin (DCN) and endoplasmin (HSP90B1) which play important roles regulating the tumour microenvironment and in pathways related to tumorigenesis. This study indicates that high expression of Decorin is associated with lymph node metastasis (p&lt;0.001), higher number of positive lymph nodes (p&lt;0.0001) and worse overall survival (p = 0.01). High expression of HSP90B1 is associated with distant metastasis (p&lt;0.0001) and decreased overall survival (p&lt;0.0001) these patients also appear to benefit significantly from hormonal treatment. CONCLUSIONS: Using quantitative proteomic profiling of primary breast cancers, two new promising prognostic and predictive markers were found to identify patients with worse survival. In addition HSP90B1 appears to identify a group of patients with distant metastasis with otherwise good prognostic features

    Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery

    Get PDF
    A spontaneously restored sinus rhythm in permanent atrial fibrillation patients has been often observed after mitral valve (MV) surgery, but persisting duration in sinus rhythm varies from patient to patient. Heat shock proteins (Hsps) may be involved in pathogenesis of atrial fibrillation. We hypothesized that stabilization of restored sinus rhythm is associated with expression of Hsps in the atria. To test this hypothesis, clinical data, biopsies of right atrial appendage, and blood samples were collected from 135 atrial fibrillation patients who spontaneously restored sinus rhythm after conventional isolated MV replacement. Comparison was made between patients who had recurrence of atrial fibrillation within 7 days (AF) vs. patients with persisted sinus rhythm for more than 7 days (SR). Results showed that SR patients had higher activity of heat shock transcription factor 1 (HSF1) as well as upregulated expressions of heat shock cognate 70, Hsp70, and Hsp27 in the tissues. The activation of HSF1–Hsps pathway was associated with less-aggressive pathogenesis as reflected by lower rates of myolysis, apoptosis, interstitial fibrosis, and inflammation in SR patients. However, Hsp60 was lower in both tissue and plasma in SR patients, and was positively correlated with apoptosis, interstitial fibrosis, and inflammation. These findings suggest that the Hsps play important roles in stabilization of restored sinus rhythm after MV surgery by inhibiting AF-related atrial remodeling and arrhythmogenic substrates in atrial fibrillation patients. Low circulating Hsp60 levels preoperatively might predict a stable spontaneously restored sinus rhythm postoperatively

    Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    Get PDF
    Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon.We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the beta isoform of molecular chaperone HSP90

    Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid

    Get PDF
    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2 alpha by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.This work was supported by Fundacao para a Ciencia e Tecnologia and COMPETE/QREN/EU (PTDC/BIA-MIC/114116/2009), and by the Canadian Institute for Health Research (MOP 89737 to MH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    LPS-induced delayed preconditioning is mediated by hsp90 and involves the heat shock response in mouse kidney.

    Get PDF
    INTRODUCTION: We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. METHODS: Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. RESULTS: Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. CONCLUSION: LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams

    Get PDF
    The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe

    Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups

    Get PDF
    Background: Canagliflozin reduces the risk of kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, but effects on specific cardiovascular outcomes are uncertain, as are effects in people without previous cardiovascular disease (primary prevention). Methods: In CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation), 4401 participants with type 2 diabetes mellitus and chronic kidney disease were randomly assigned to canagliflozin or placebo on a background of optimized standard of care. Results: Primary prevention participants (n=2181, 49.6%) were younger (61 versus 65 years), were more often female (37% versus 31%), and had shorter duration of diabetes mellitus (15 years versus 16 years) compared with secondary prevention participants (n=2220, 50.4%). Canagliflozin reduced the risk of major cardiovascular events overall (hazard ratio [HR], 0.80 [95% CI, 0.67-0.95]; P=0.01), with consistent reductions in both the primary (HR, 0.68 [95% CI, 0.49-0.94]) and secondary (HR, 0.85 [95% CI, 0.69-1.06]) prevention groups (P for interaction=0.25). Effects were also similar for the components of the composite including cardiovascular death (HR, 0.78 [95% CI, 0.61-1.00]), nonfatal myocardial infarction (HR, 0.81 [95% CI, 0.59-1.10]), and nonfatal stroke (HR, 0.80 [95% CI, 0.56-1.15]). The risk of the primary composite renal outcome and the composite of cardiovascular death or hospitalization for heart failure were also consistently reduced in both the primary and secondary prevention groups (P for interaction &gt;0.5 for each outcome). Conclusions: Canagliflozin significantly reduced major cardiovascular events and kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, including in participants who did not have previous cardiovascular disease
    corecore