180 research outputs found
Large thermoelectric figure of merit for 3D topological Anderson insulators via line dislocation engineering
We study the thermoelectric properties of three-dimensional topological
Anderson insulators with line dislocations. We show that at high densities of
dislocations the thermoelectric figure of merit ZT can be dominated by
one-dimensional topologically-protected conducting states channeled through the
lattice screw dislocations in the topological insulator materials with a
non-zero time-reversal-invariant momentum such as Bi_{1-x}Sb_x. When the
chemical potential does not exceed much the mobility edge the ZT at room
temperatures can reach large values, much higher than unity for reasonable
parameters, hence making this system a strong candidate for applications in
heat management of nano-devices.Comment: 4 pages, 3 figure
Predicting hospital admission and discharge with symptom or function scores in patients with schizophrenia: pooled analysis of a clinical trial extension
<p>Abstract</p> <p>Background</p> <p>The purpose of this analysis was to evaluate relationships between hospital admission or discharge and scores for symptom or functioning in patients with schizophrenia.</p> <p>Methods</p> <p>Data were from three 52-week open-label extensions of the double-blind pivotal trials of paliperidone extended-release (ER). Symptoms and patient function were measured every 4 weeks using the Personal and Social Performance (PSP) scale and the Positive and Negative Syndrome Scale (PANSS). The intent-to-treat analysis set was defined as open-label patients who had at least one post-baseline PSP and PANSS measurement. Time until first hospitalization was evaluated using the Cox proportional hazard model with categorical time-dependent measures for the PSP (1 to 30, 31 to 70, 71 to 100) or PANSS (< 75, ≥ 75 to < 95, ≥ 95), as well as age, gender, schizophrenia duration, and country. Similar analyses were performed for time to discharge.</p> <p>Results</p> <p>Of the 1,077 enrolled patients, 1,028 (95.5%) met study criteria; of these, 382 (37.2%) were hospitalized at open-label baseline. Compared with patients with PSP ≥ 71 group, the hazard for new hospitalization was 8.351 times greater (<it>P </it>= 0.0001) for patients with the poorest functioning (PSP 1 to 30) and 1.977 times greater (<it>P </it>= 0.0295) for patients with PSP of 31-70 compared to the ≥ 71 group. The hazard for new hospitalization was 5.457 times greater (<it>P </it>< 0.0001) for patients PANSS ≥ 95 and 2.316 times greater (<it>P </it>= 0.0027) for the ≥ 75 to < 95 group compared with the < 75 group. For patients hospitalized at baseline, the PANSS ≥ 95 patients had a discharge hazard that was 0.456 times lower than for the < 75 patients (<it>P </it>< 0.0001). The hazard for discharge was 0.646 times lower (<it>P = </it>0.0012) for the PANSS ≥ 75 to < 95 group compared with the < 75 group. A patient's country was a significant predictor variable, with US patients being admitted and discharged faster.</p> <p>Conclusions</p> <p>Better functioning or being less symptomatic is associated with reduced risk for hospitalization and greater chance for early discharge. Treatments or programs that reduce symptoms or improve function decrease the risk of hospitalization in community patients or increase the chance of discharge for hospitalized patients.</p
Homeostatic Plasticity Studied Using In Vivo Hippocampal Activity-Blockade: Synaptic Scaling, Intrinsic Plasticity and Age-Dependence
Homeostatic plasticity is thought to be important in preventing neuronal circuits from becoming hyper- or hypoactive. However, there is little information concerning homeostatic mechanisms following in vivo manipulations of activity levels. We investigated synaptic scaling and intrinsic plasticity in CA1 pyramidal cells following 2 days of activity-blockade in vivo in adult (postnatal day 30; P30) and juvenile (P15) rats. Chronic activity-blockade in vivo was achieved using the sustained release of the sodium channel blocker tetrodotoxin (TTX) from the plastic polymer Elvax 40W implanted directly above the hippocampus, followed by electrophysiological assessment in slices in vitro. Three sets of results were in general agreement with previous studies on homeostatic responses to in vitro manipulations of activity. First, Schaffer collateral stimulation-evoked field responses were enhanced after 2 days of in vivo TTX application. Second, miniature excitatory postsynaptic current (mEPSC) amplitudes were potentiated. However, the increase in mEPSC amplitudes occurred only in juveniles, and not in adults, indicating age-dependent effects. Third, intrinsic neuronal excitability increased. In contrast, three sets of results sharply differed from previous reports on homeostatic responses to in vitro manipulations of activity. First, miniature inhibitory postsynaptic current (mIPSC) amplitudes were invariably enhanced. Second, multiplicative scaling of mEPSC and mIPSC amplitudes was absent. Third, the frequencies of adult and juvenile mEPSCs and adult mIPSCs were increased, indicating presynaptic alterations. These results provide new insights into in vivo homeostatic plasticity mechanisms with relevance to memory storage, activity-dependent development and neurological diseases
Dose-associated changes in safety and efficacy parameters observed in a 24-week maintenance trial of olanzapine long-acting injection in patients with schizophrenia
<p>Abstract</p> <p>Background</p> <p>In a recently published 24-week maintenance study of olanzapine long-acting injection (LAI) in schizophrenia (Kane et al., 2010), apparent dose-associated changes were noted in both efficacy and safety parameters. To help clinicians balance safety and efficacy when choosing a dose of olanzapine LAI, we further studied these changes.</p> <p>Methods</p> <p>Outpatients with schizophrenia who had maintained stability on open-label oral olanzapine for 4 to 8 weeks were randomly assigned to "low" (150 mg/2 weeks; N = 140), "medium" (405 mg/4 weeks; N = 318), or "high" (300 mg/2 weeks; N = 141) dosages of olanzapine LAI for 24 weeks. Potential relationships between dose and several safety or efficacy measures were examined via regression analysis, the Jonckheere-Terpstra test (continuous data), or the Cochran-Armitage test (categorical data).</p> <p>Results</p> <p>Safety parameters statistically significantly related to dose were mean weight change (low: +0.67 [SD = 4.38], medium: +0.89 [SD = 3.87], high: +1.70 [SD = 4.14] kg, p = .024; effect size [ES] = 0.264 high vs. low dose), mean change in prolactin (low: -5.61 [SD = 12.49], medium: -2.76 [SD = 19.02]), high: +3.58 [SD = 33.78] μg/L, p = .001; ES = 0.410 high vs. low dose), fasting triglycerides change from normal at baseline to high (low: 3.2%, medium: 6.0%, high: 18.9%, p = .001; NNT = 7 high vs. low dose) and fasting high-density lipoprotein cholesterol change from normal at baseline to low (low: 13.8%, medium: 19.6%, high: 30.7%, p = .019; NNT = 6 high vs. low dose). Efficacy measures significantly related to dose included Positive and Negative Syndrome Scale total score mean change (low: +2.66 [SD = 14.95], medium: -0.09 [SD = 13.47], high: -2.19 [SD = 13.11], p <.01; ES = 0.356 high vs. low dose), relapse rate (low: 16%, medium: 10%, high: 5%, p = .003; NNT = 9 high vs. low dose), all-cause discontinuation rate (low: 36%, medium: 30%, high: 24%, p = .037; NNT = 9 high vs. low dose), and rate of discontinuation due to efficacy-related reasons (low: 20%, medium: 14%, high: 6%, p <.001). Time to all-cause discontinuation (p = .035) and time to relapse (p = .005) were also significantly related to dose.</p> <p>Conclusions</p> <p>Analyses of several safety and efficacy parameters revealed significant associations with dose of olanzapine LAI, with the highest dose generally showing greater efficacy as well as greater adverse changes in metabolic safety measures. When considering olanzapine LAI, as with all antipsychotics, it is important to carefully consider the potential benefits and risks for an individual patient.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00088491">NCT00088491</a></p
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Genetic variability of histamine receptors in patients with Parkinson's disease
<p>Abstract</p> <p>Background</p> <p>Changes in the density and expression of histamine receptors (HRH) have been detected in Parkinson's disease (PD) patients, and HRH antagonists bring about improvements in motor and other symptoms, thus suggesting that HRH play a role in the clinical response of PD patients. This study is aimed to analyse polymorphic variations of HRH in patients with PD.</p> <p>Methods</p> <p>Leukocytary DNA from 195 PD patients and a control group of 231 unrelated healthy individuals was studied for the nonsynonymous HRH1Leu449Ser and the promoter HRH2G-1018A polymorphisms by using amplification-restriction analyses.</p> <p>Results</p> <p>The HRH1Leu449Ser amino acid substitution was identified in two women with late-onset PD whereas it was not observed among healthy subjects. The HRH2G-1018A polymorphism was observed with allele frequencies = 3.59 (95% CI = 1.74–5.44) and 5.0 (95% CI = 3.00–6.96) for patients with PD and healthy controls, respectively. These frequencies were independent of gender and age of onset of the disease. Multiple comparison analyses revealed that differences were not statistically significant.</p> <p>Conclusion</p> <p>These results indicate that the polymorphisms analyzed are not a major risk factor for PD, although the HRH1Leu449Ser amino acid substitution might be related to PD.</p
Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes
Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes
Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells
Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons
Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory
Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. “Bias” can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain
- …