22 research outputs found

    TIBLE: a web-based, freely accessible resource for small-molecule binding data for mycobacterial species

    Get PDF
    TIBLE is a web-based resource that provides easy access to data on the minimal inhibitory concentrations for small molecules against several mycobacterial species, as well as the target binding and off-target predictions for Mycobacterium tuberculosis. The current version of the database holds the activity data for more than 19 000 distinct small molecules against 39 mycobacterial species, binding data for 106 Mycobacterium tuberculosis target proteins and predictions for their potential off-targets. The resource integrates disparate public data and methods to provide easy access to the minimum inhibitory concentration and binding data, facilitation of data sharing, and identification of small molecules and targets for development of anti-tuberculosis therapeutics.Wellcome Trust Seeding Drug Discovery (101134/Z/13/Z to A.P.H., T.L.B.); MRC Newton Award (RG78439 to S.M. and T.L.B.); Programme Grant (093167/Z/10/Z to T.L.B.); Cystic Fibrosis Trust Grant (RG 70975); Wellcome Trust Investigator Award (200814/Z/16/Z to T.L.B.)

    Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures

    Get PDF
    Interactions between proteins and their ligands, such as small molecules, other proteins, and DNA, depend on specific interatomic interactions that can be classified on the basis of atom type and distance and angle constraints. Visualisation of these interactions provides insights into the nature of molecular recognition events and has practical uses in guiding drug design and understanding the structural and functional impacts of mutations. We present Arpeggio, a web server for calculating interactions within and between proteins and protein, DNA, or small-molecule ligands, including van der Waals', ionic, carbonyl, metal, hydrophobic, and halogen bond contacts, and hydrogen bonds and specific atom-aromatic ring (cation-π, donor-π, halogen-π, and carbon-π) and aromatic ring-aromatic ring (π-π) interactions, within user-submitted macromolecule structures. PyMOL session files can be downloaded, allowing high-quality publication images of the interactions to be generated. Arpeggio is implemented in Python and available as a user-friendly web interface at http://structure.bioc.cam.ac.uk/arpeggio/ and as a downloadable package at https://bitbucket.org/harryjubb/arpeggio.H.C.J. was supported by the Biotechnology and Biological Sciences Research Council and UCB [BB/J500574/1]. B.O.-M. was supported by the Bill and Melinda Gates Foundation. D.B.A. is the recipient of a C. J. Martin Research Fellowship from the National Health and Medical Research Council of Australia (APP1072476) and is funded by the Jack Brockhoff Foundation (JBF 4186, 2016) and a Wellcome Trust Programme Grant to TLB (093167/Z/10/Z). D.B.A. and T.L.B. are funded by a Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (MR/M026302/1). T.L.B. wishes to acknowledge the University of Cambridge and The Wellcome Trust for facilities and support. This work builds on work funded by the Wellcome Trust

    Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of data on protein-protein interactions (PPIs) available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine.</p> <p>Results</p> <p>To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS). Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs) retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM). Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV) proteins identified to date.</p> <p>Conclusions</p> <p>The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.</p

    The Overlap of Small Molecule and Protein Binding Sites within Families of Protein Structures

    Get PDF
    Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators

    The role of ligand efficiency metrics in drug discovery

    Get PDF
    The judicious application of ligand or binding efficiencies, which quantify the molecular properties required to gain binding affinity for a drug target, is gaining traction in the selection and optimisation of fragments, hits, and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimised ligand efficiency values for their target. Optimising ligand efficiencies based on both molecular size and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the molecular inflation that pervades current practice in medicinal chemistry, and to increase the developability of drug candidates

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2

    Tools and rules for macrocycles

    No full text

    Hotspots API: a python package for the detection of small molecule binding hotspots and application to structure-based drug design

    No full text
    Methods that survey protein surfaces for binding hotspots can help to evaluate target tractability and guide exploration of potential ligand binding regions. Fragment Hotspot Maps builds upon interaction data mined from the CSD (Cambridge Structural Database) and exploits the idea of identifying hotspots using small chemical fragments, which is now widely used to design new drug leads. Prior to this publication, Fragment Hotspot Maps was only publicly available through a web application. To increase the accessibility of this algorithm we present the Hotspots API (application programming interface), a toolkit that offers programmatic access to the core Fragment Hotspot Maps algorithm, thereby facilitating the interpretation and application of the analysis. To demonstrate the package's utility, we present a workflow which automatically derives protein hydrogen-bond constraints for molecular docking with GOLD. The Hotspots API is available from https://github.com/prcurran/hotspots under the MIT license and is dependent upon the commercial CSD Python API
    corecore