6,432 research outputs found

    Fabrication and test of a space power boiler feed electromagnetic pump. Part 2: Test facility and performance test

    Get PDF
    A three-phase helical induction electromagnetic pump, designed for the boiler-feed pump of a potassium Rankine-cycle space power system, was built and tested. The pump was tested over a range of potassium temperatures from 900 to 1400 F, flow rates from 0.75 to 4.85 lb/sec, developed pressures up to 340 psi, net positive suction heads (NPSH) from 1 to 22 psi, and NaK coolant temperatures from 800 to 950 F. The maximum efficiency at the pump design point of 3.25 lb/sec flow rate, 240 psi developed pressure, 1000 F potassium inlet temperature, and 800 F NaK coolant temperature was 16.3 percent. The tests also showed successful operation of the pump at an NPSH as low as 1.5 psi without cavitating

    Role of the Pauli principle in collective-model coupled-channels calculations

    Full text link
    A multi-channel algebraic scattering theory, to find solutions of coupled-channel scattering problems with interactions determined by collective models, has been structured to ensure that the Pauli principle is not violated. By tracking the results in the zero coupling limit, a correct interpretation of the sub-threshold and resonant spectra of the compound system can be made. As an example, the neutron-12C system is studied defining properties of 13C to 10 MeV excitation. Accounting for the Pauli principle in collective coupled-channels models is crucial to the outcome.Comment: 4 pages, 1 figure, version appearing in Phys. Rev. Let

    Thermodynamics and area in Minkowski space: Heat capacity of entanglement

    Full text link
    Tracing over the degrees of freedom inside (or outside) a sub-volume V of Minkowski space in a given quantum state |psi>, results in a statistical ensemble described by a density matrix rho. This enables one to relate quantum fluctuations in V when in the state |psi>, to statistical fluctuations in the ensemble described by rho. These fluctuations scale linearly with the surface area of V. If V is half of space, then rho is the density matrix of a canonical ensemble in Rindler space. This enables us to `derive' area scaling of thermodynamic quantities in Rindler space from area scaling of quantum fluctuations in half of Minkowski space. When considering shapes other than half of Minkowski space, even though area scaling persists, rho does not have an interpretation as a density matrix of a canonical ensemble in a curved, or geometrically non-trivial, background.Comment: 17 page

    Evaluation of diffusive gradients in thin-films using a Diphonix® resin for monitoring dissolved uranium in natural waters

    Get PDF
    Commercially available Diphonix® resin (TrisKem International) was evaluated as a receiving phase for use with the diffusive gradients in thin-films (DGT) passive sampler for measuring uranium. This resin has a high partition coefficient for actinides and is used in the nuclear industry. Other resins used as receiving phases with DGT for measuring uranium have been prone to saturation and significant chemical interferences. The performance of the device was evaluated in the laboratory and in field trials. In laboratory experiments uptake of uranium (all 100% efficiency) by the resin was unaffected by varying pH (4–9), ionic strength (0.01–1.00 M, as NaNO3) and varying aqueous concentrations of Ca2+ (100–500 mg L−1) and HCO3− (100–500 mg L−1). Due to the high partition coefficient of Diphonex®, several elution techniques for uranium were evaluated. The optimal eluent mixture was 1 M NaOH/1 M H2O2, eluting 90% of the uranium from the resin. Uptake of uranium was linear (R2 = 0.99) over time (5 days) in laboratory experiments using artificial freshwater showing no saturation effects of the resin. In field deployments (River Lambourn, UK) the devices quantitatively accumulated uranium for up to 7 days. In both studies uptake of uranium matched that theoretically predicted for the DGT. Similar experiments in seawater did not follow the DGT theoretical uptake and the Diphonix® appeared to be capacity limited and also affected by matrix interferences. Isotopes of uranium (U235/U238) were measured in both environments with a precision and accuracy of 1.6–2.2% and 1.2–1.4%, respectively. This initial study shows the potential of using Diphonix®-DGT for monitoring of uranium in the aquatic environment

    Nucleon-nucleus optical potential in the particle-hole approach

    Get PDF
    Feshbach's projection formalism in the particle-hole model space leads to a microscopic description of scattering in terms of the many-body self-energy. To investigate the feasibility of this approach, an optical potential for O-16 is constructed starting from two previous calculations of the self-energy for this nucleus. The results reproduce the background phase shifts for positive parity waves and the resonances beyond the mean field. The latter can be computed microscopically for energies of astrophysical interest using Green's function theory.Comment: 8 pages, 6 figures. Submitted to Phys. Rev.

    Bottom photography and sediment analyses on CESAR

    Get PDF

    Prescription-induced jump distributions in multiplicative Poisson processes

    Get PDF
    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative gaussian white noise, the Stratonovich prescription does not correspond to the well known mid-point (or any other intermediate) prescription. By introducing an inertial term in the GLE we show that the Ito and Stratonovich prescriptions naturally arise depending on two time scales, the one induced by the inertial term and the other determined by the jump event. We also show that when the multiplicative noise is linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise whose features are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data

    Effects of Inoculation and Wilting on the Preservation and Utilization of Wheat Forage

    Get PDF
    Wheat forage was harvested at an early head stage of maturity and ensiled in 12 900-kg experimental silos at three percentages of DM (20.8% for direct-cut forage and 27.9 or 39.3% for wilted forage) either with or without application of a lactic acid bacterial inoculant. The objective was to test the efficacy of the inoculant to alter silage fermentation, preservation, and nutritive value of wheat forage ensiled at different moisture percentages because of wilting. Wilting enhanced DM preservation and decreased fermentation end products. Inoculation made the fermentation more homolactic but did not enhance DM preservation. Silage rations (80% DM as silage) were fed at 1.8% of BW/d to six ruminally and abomasally fistulated steers (350 kg) in an experiment with a Latin-square design and a 3 × 2 factorial arrangement of treatments. Digestive responses to silage diets were not influenced by inoculation. Intake was depressed with direct-cut silage rations. Wilting improved fiber digestibility and was associated with changes in ruminal contents and fermentation end products. Wilting appears to be more effective than inoculation as a postharvest management tool to improve small grain silage. © 1995, American Dairy Science Association. All rights reserved
    • …
    corecore