7,521 research outputs found

    The missing complexity in seismically imaged normal faults: What are the implications for geometry and production response?

    Get PDF
    The impact of geometric uncertainty on across-fault flow behaviour at the scale of individual intra-reservoir faults is investigated in this study. A high resolution digital elevation model (DEM) of a faulted outcrop is used to construct an outcrop-scale geocellular grid capturing high-resolution fault geometries (5 m scale). Seismic forward modelling of this grid allows generation of a 3D synthetic seismic cube, which reveals the corresponding seismically resolvable fault geometries (12.5 m scale). Construction of a second geocellular model, based upon the seismically resolvable fault geometries, allows comparison with the original outcrop geometries. Running fluid flow simulations across both models enables us to assess quantitatively the impact of outcrop resolution versus seismic resolution fault geometries upon across-fault flow. The results suggest that seismically resolvable fault geometries significantly underestimate the area of across-fault juxtaposition relative to realistic fault geometries. In turn this leads to overestimates in the sealing ability of faults, and inaccurate calculation of fault plane properties such as transmissibility multipliers (TMs)

    Underuse of coronary revascularization procedures in patients considered appropriate candidates for revascularization.

    Get PDF
    Background: Ratings by an expert panel of the appropriateness of treatments may offer better guidance for clinical practice than the variable decisions of individual clinicians, yet there have been no prospective studies of clinical outcomes. We compared the clinical outcomes of patients treated medically after angiography with those of patients who underwent revascularization, within groups defined by ratings of the degree of appropriateness of revascularization in varying clinical circumstances.Methods: This was a prospective study of consecutive patients undergoing coronary angiography at three London hospitals. Before patients were recruited, a nine-member expert panel rated the appropriateness of percutaneous transluminal coronary angioplasty (PTCA) and coronary-artery bypass grafting (CABG) on a nine-point scale (with 1 denoting highly inappropriate and 9 denoting highly appropriate) for specific clinical indications. These ratings were then applied to a population of patients with coronary artery disease. However, the patients were treated without regard to the ratings. A total of 2552 patients were followed for a median of 30 months after angiography.Results: Of 908 patients with indications for which PTCA was rated appropriate (score, 7 to 9), 34 percent were treated medically; these patients were more likely to have angina at follow-up than those who underwent PTCA (odds ratio, 1.97; 95 percent confidence interval, 1.29 to 3.00). Of 1353 patients with indications for which CABG was considered appropriate, 26 percent were treated medically; they were more likely than those who underwent CABG to die or have a nonfatal myocardial infarction - the composite primary outcome (hazard ratio, 4.08; 95 percent confidence interval, 2.82 to 5.93) - and to have angina (odds ratio, 3.03; 95 percent confidence interval, 2.08 to 4.42). Furthermore, there was a graded relation between rating and outcome over the entire scale of appropriateness (P for linear trend = 0.002).Conclusions: On the basis of the ratings of the expert panel, we identified substantial underuse of coronary revascularization among patients who were considered appropriate candidates for these procedures. Underuse was associated with adverse clinical outcomes. (N Engl J Med 2001;344:645-54.) Copyright (C) 2001 Massachusetts Medical Society

    Low-latency vision-based fiducial detection and localisation for object tracking

    Full text link
    Real-time vision systems are widely-used in construction and manufacturing industries. A significant proportion of computational resources of such systems is used in fiducial identification and localisation for motion tracking of moving targets. The requirement is to localise a pattern in an image captured by the vision system precisely, accurately, and with a minimum available computation time. As such, this paper presents a class of patterns and, accordingly, proposes an algorithm to fulfil the requirement. Here, the patterns are designed using circular patches of concentric circles to increase the probability of detection and reduce cases of false detection. In the detection algorithm, the image captured by the vision system is first scaled down for computationally-effective processing. The scaled image is then separated by filtering only the colour components, which are made up of outer circular patches in the proposed pattern. A blob detection algorithm is then implemented for identifying inner circular patches. The inner circles are then localised in the image by using the colour information obtained. Finally, the localised pattern, along with the camera and distortion matrix of the vision system, is applied in a perspective-n-point solving algorithm to estimate the marker orientation and position in the global coordinate system. Our system shows significant enhancement in performance of fiducial detection and identification and achieves the required latency of less than ten milliseconds. Thus, it can be used for infrastructure monitoring in many applications that involve high-speed real-time vision systems

    Roboteye technology for thermal target tracking using predictive control

    Full text link
    © ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things. All rights reserved. Thermal cameras are widely used in the fatigue analysis of mechanical structures using the thermoelastic effect. Nevertheless, such analysis is hampered due to blurry images resulting from the motion of structure-under-test. To address the issue this paper presents a system that utilizes robotic vision and predictive control. The system comprises of a thermal camera, a vision camera, a RobotEye, and a fiducial detection system. A marker is attached to a thermal target in order to estimate its position and orientation using the proposed detection system. To predict the future position of the thermal moving object, a Kalman filter is used. Finally, the Model Predictive Control (MPC) approach is applied to generate commands for the robot to follow the target. Results of the tracking by MPC are included in this paper along with the performance evaluation of the whole system. The evaluation clearly shows the improvement in the tracking performance of the development for thermal structural analysis

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Dietary ω-6 polyunsaturated fatty acid arachidonic acid increases inflammation, but inhibits ECM protein expression in COPD

    Full text link
    © 2018 The Author(s). Background: The obesity paradox in COPD describes protective effects of obesity on lung pathology and inflammation. However, the underlying relationships between obesity, diet and disease outcomes in COPD are not fully understood. In this study we measured the response to dietary fatty acids upon markers of inflammation and remodelling in human lung cells from people with and without COPD. Methods: Pulmonary fibroblasts were challenged with ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, saturated fatty acids (SFAs) or the obesity-associated cytokine TNFα. After 48-72 h release of the pro-inflammatory cytokines interleukin (IL)-6 and CXCL8 was measured using ELISA and mRNA expression and deposition of the extracellular matrix (ECM) proteins fibronectin, type I collagen, tenascin and perlecan were measured using qPCR or ECM ELISA, respectively. Results: Challenge with the ω-6 PUFA arachidonic acid (AA), but not ω-3 PUFAs or SFAs, resulted in increased IL-6 and CXCL8 release from fibroblasts, however IL-6 and CXCL8 release was reduced in COPD (n = 19) compared to non-COPD (n = 36). AA-induced cytokine release was partially mediated by downstream mediators of cyclooxygenase (COX)-2 in both COPD and non-COPD. In comparison, TNFα-induced IL-6 and CXCL8 release was similar in COPD and non-COPD, indicating a specific interaction of AA in COPD. In patients with or without COPD, regression analysis revealed no relationship between BMI and cytokine release. In addition, AA, but not SFAs or ω-3 PUFAs reduced the basal deposition of fibronectin, type I collagen, tenascin and perlecan into the ECM in COPD fibroblasts. In non-COPD fibroblasts, AA-challenge decreased basal deposition of type I collagen and perlecan, but not fibronectin and tenascin. Conclusions: This study shows that AA has disease-specific effects on inflammation and ECM protein deposition. The impaired response to AA in COPD might in part explain why obesity appears to have less detrimental effects in COPD, compared to other lung diseases

    Integrating Positive and Clinical Psychology: Viewing Human Functioning as Continua from Positive to Negative Can Benefit Clinical Assessment, Interventions and Understandings of Resilience

    Get PDF
    In this review we argue in favour of further integration between the disciplines of positive and clinical psychology. We argue that most of the constructs studied by both positive and clinical psychology exist on continua ranging from positive to negative (e.g., gratitude to ingratitude, anxiety to calmness) and so it is meaningless to speak of one or other field studying the “positive” or the “negative”. However, we highlight historical and cultural factors which have led positive and clinical psychologies to focus on different constructs; thus the difference between the fields is more due to the constructs of study rather than their being inherently “positive” or “negative”. We argue that there is much benefit to clinical psychology of considering positive psychology constructs because; (a) constructs studied by positive psychology researchers can independently predict wellbeing when accounting for traditional clinical factors, both cross-sectionally and prospectively, (2) the constructs studied by positive psychologists can interact with risk factors to predict outcomes, thereby conferring resilience, (3) interventions that aim to increase movement towards the positive pole of well-being can be used encourage movement away from the negative pole, either in isolation or alongside traditional clinical interventions, and (4) research from positive psychology can support clinical psychology as it seeks to adapt therapies developed in Western nations to other cultures

    Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer: generation of α-aminoalkyl radicals.

    Get PDF
    addresses: School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UKEX4 4QD. [email protected]: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2010 Royal Society of ChemistryThe extent to which deuterium can act as a protecting group to prevent unwanted 1,5-hydrogen atom transfer to aryl and vinyl radical intermediates was examined in the context of the generation of α-aminoalkyl radicals in a pyrrolidine ring. Intra- and intermolecular radical trapping following hydrogen atom transfer provides an illustration of the use of the primary kinetic isotope effect in directing the outcome of synthetic C-C bond-forming processes
    corecore