199 research outputs found
High burden of viral respiratory co-infections in a cohort of children with suspected pulmonary tuberculosis
Background The presentation of pulmonary tuberculosis (PTB) in young children is often clinically indistinguishable from other common respiratory illnesses, which are frequently infections of viral aetiology. As little is known about the role of viruses in children with PTB, we investigated the prevalence of respiratory viruses in children with suspected PTB at presentation and follow-up. Methods In an observational cohort study, children < 13 years were routinely investigated for suspected PTB in Cape Town, South Africa between December 2015 and September 2017 and followed up for 24 weeks. Nasopharyngeal aspirates (NPAs) were tested for respiratory viruses using multiplex PCR at enrolment, week 4 and 8. Results Seventy-three children were enrolled [median age 22.0 months; (interquartile range 10.0–48.0); 56.2% male and 17.8% HIV-infected. Anti-tuberculosis treatment was initiated in 54.8%; of these 50.0% had bacteriologically confirmed TB. At enrolment, ≥1 virus were detected in 95.9% (70/73) children; most commonly human rhinovirus (HRV) (74.0%). HRV was more frequently detected in TB cases (85%) compared to ill controls (60.6%) (p = 0.02). Multiple viruses were detected in 71.2% of all children; 80% of TB cases and 60.6% of ill controls (p = 0.07). At follow-up, ≥1 respiratory virus was detected in 92.2% (47/51) at week 4, and 94.2% (49/52) at week 8. Conclusions We found a high prevalence of viral respiratory co-infections in children investigated for PTB, irrespective of final PTB diagnosis, which remained high during follow up. Future work should include investigating the whole respiratory ecosystem in combination with pathogen- specific immune responses
Identification of pyrimethamine- and chloroquine-resistant Plasmodium falciparum in Africa between 1984 and 1998: genotyping of archive blood samples
<p>Abstract</p> <p>Background</p> <p>Understanding the geographical distribution of drug resistance of <it>Plasmodium falciparum </it>is important for the effective treatment of malaria. Drug resistance has previously been inferred mainly from records of clinical resistance. However, clinical resistance is not always consistent with the parasite's genetic resistance. Thus, molecular identification of the parasite's drug resistance is required. In Africa, clinical resistance to pyrimethamine (Pyr) and chloroquine (CQ) was evident before 1980 but few studies investigating the genetic resistance to these drugs were conducted before the late 1990s. In this study, genotyping of genes involved in resistance to Pyr and CQ was performed using archive blood samples from Africa between 1984 and 1998.</p> <p>Methods</p> <p>Parasite DNA was extracted from <it>P. falciparum</it>-infected blood smears collected from travellers returning to Japan from Africa between 1984 and 1998. Genotypes of the dihydrofolate reductase gene (<it>dhfr</it>) and CQ-resistance transporter gene (<it>pfcrt) </it>were determined by polymerase chain reaction amplification and sequencing.</p> <p>Results</p> <p>Genotyping of <it>dhfr </it>and <it>pfcrt </it>was successful in 59 and 80 samples, respectively. One wild-type and seven mutant <it>dhfr </it>genotypes were identified. Three <it>dhfr </it>genotypes lacking the S108N mutation (NRSI, ICSI, IRSI; amino acids at positions 51, 59, 108, and 164 with mutations underlined) were highly prevalent before 1994 but reduced after 1995, accompanied by an increase in genotypes with the S108N mutation. The <it>dhfr </it>IRNI genotype was first identified in Nigeria in 1991 in the present samples, and its frequency gradually increased. However, two double mutants (ICNI and NRNI), the latter of which was exclusively found in West Africa, were more frequent than the IRNI genotype. Only two <it>pfcrt </it>genotypes were found, the wild-type and a Southeast Asian type (CVIET; amino acids at positions 72-76 with mutations underlined). The CVIET genotype was already present as early as 1984 in Tanzania and Nigeria, and appeared throughout Africa between 1984 and 1998.</p> <p>Conclusions</p> <p>This study is the first to report the molecular identification of Pyr- and CQ-resistant genotypes of <it>P. falciparum </it>in Africa before 1990. Genotyping of <it>dhfr </it>and <it>pfcrt </it>using archive samples has revealed new aspects of the evolutionary history of Pyr- and CQ-resistant parasites in Africa.</p
Effect of trimethoprim-sulphamethoxazole on the risk of malaria in HIV-infected Ugandan children living in an area of widespread antifolate resistance
<p>Abstract</p> <p>Background</p> <p>Daily trimethoprim-sulfamethoxazole (TS) protects against malaria, but efficacy may be diminished as anti-folate resistance increases. This study assessed the incidence of falciparum malaria and the prevalence of resistance-conferring <it>Plasmodium falciparum </it>mutations in HIV-infected children receiving daily TS and HIV-uninfected children not taking TS.</p> <p>Materials and methods</p> <p>Subjects were 292 HIV-infected and 517 uninfected children from two cohort studies in Kampala, Uganda observed from August 2006 to December 2008. Daily TS was given to HIV-infected, but not HIV-uninfected children and all participants were provided an insecticide-treated bed net. Standardized protocols were used to measure the incidence of malaria and identify markers of antifolate resistance.</p> <p>Results</p> <p>Sixty-five episodes of falciparum malaria occurred in HIV-infected and 491 episodes in uninfected children during the observation period. TS was associated with a protective efficacy of 80% (0.10 vs. 0.45 episodes per person year, p < 0.001), and efficacy did not vary over three consecutive 9.5 month periods (81%, 74%, 80% respectively, p = 0.506). The prevalences of <it>dhfr </it>51I, 108N, and 59R and <it>dhps </it>437G and 540E mutations were each over 90% among parasites infecting both HIV-infected and uninfected children. Prevalence of the <it>dhfr </it>164L mutation, which is associated with high-level resistance, was significantly higher in parasites from HIV-infected compared to uninfected children (8% vs. 1%, p = 0.001). Sequencing of the <it>dhfr </it>and <it>dhps </it>genes identified only one additional polymorphism, <it>dhps </it>581G, in 2 of 30 samples from HIV-infected and 0 of 54 samples from uninfected children.</p> <p>Conclusion</p> <p>Despite high prevalence of known anti-folate resistance-mediating mutations, TS prophylaxis was highly effective against malaria, but was associated with presence of <it>dhfr </it>164L mutation.</p
The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination
BACKGROUND\ud
\ud
Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud
\ud
RESULTS\ud
\ud
The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud
\ud
CONCLUSION\ud
\ud
The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high
High Resistance of Plasmodium falciparum to Sulphadoxine/Pyrimethamine in Northern Tanzania and the Emergence of dhps Resistance Mutation at Codon 581
BACKGROUND: Sulphadoxine-pyrimethamine (SP) a widely used treatment for uncomplicated malaria and recommended for intermittent preventive treatment of malaria in pregnancy, is being investigated for intermittent preventive treatment of malaria in infants (IPTi). High levels of drug resistance to SP have been reported from north-eastern Tanzania associated with mutations in parasite genes. This study compared the in vivo efficacy of SP in symptomatic 6-59 month children with uncomplicated malaria and in asymptomatic 2-10 month old infants. METHODOLOGY AND PRINCIPAL FINDINGS: An open label single arm (SP) standard 28 day in vivo WHO antimalarial efficacy protocol was used in 6 to 59 months old symptomatic children and a modified protocol used in 2 to 10 months old asymptomatic infants. Enrolment was stopped early (87 in the symptomatic and 25 in the asymptomatic studies) due to the high failure rate. Molecular markers were examined for recrudescence, re-infection and markers of drug resistance and a review of literature of studies looking for the 581G dhps mutation was carried out. In symptomatic children PCR-corrected early treatment failure was 38.8% (95% CI 26.8-50.8) and total failures by day 28 were 82.2% (95% CI 72.5-92.0). There was no significant difference in treatment failures between asymptomatic and symptomatic children. 96% of samples carried parasites with mutations at codons 51, 59 and 108 in the dhfr gene and 63% carried a double mutation at codons 437 and 540. 55% carried a third mutation with the addition of a mutation at codon 581 in the dhps gene. This triple: triple haplotype maybe associated with earlier treatment failure. CONCLUSION: In northern Tanzania SP is a failed drug for treatment and its utility for prophylaxis is doubtful. The study found a new combination of parasite mutations that maybe associated with increased and earlier failure. TRIAL REGISTRATION: ClinicalTrials.gov NCT00361114
Molecular epidemiology of drug-resistant malaria in western Kenya highlands
<p>Abstract</p> <p>Background</p> <p>Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated.</p> <p>Methods</p> <p>Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with <it>Plasmodium falciparum </it>resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (<it>pfdhfr</it>) and dihydropteroate synthetase (<it>pfdhps</it>), chloroquine resistance transporter gene (<it>pfcrt</it>), and multi-drug resistance gene 1 (<it>pfmdr1</it>).</p> <p>Results</p> <p>We found that >70% of samples harbored 76T <it>pfcrt </it>mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N <it>pfdhfr </it>and 437G/540E <it>pfdhps</it>) in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples.</p> <p>Conclusion</p> <p>These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.</p
Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya
BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites
Contrasting Patterns of Transposable Element Insertions in Drosophila Heat-Shock Promoters
The proximal promoter regions of heat-shock genes harbor a remarkable number of P transposable element (TE) insertions relative to both positive and negative control proximal promoter regions in natural populations of Drosophila melanogaster. We have screened the sequenced genomes of 12 species of Drosophila to test whether this pattern is unique to these populations. In the 12 species' genomes, transposable element insertions are no more abundant in promoter regions of single-copy heat-shock genes than in promoters with similar or dissimilar architecture. Also, insertions appear randomly distributed across the promoter region, whereas insertions clustered near the transcription start site in promoters of single-copy heat-shock genes in D. melanogaster natural populations. Hsp70 promoters exhibit more TE insertions per promoter than all other genesets in the 12 species, similarly to in natural populations of D. melanogaster. Insertions in the Hsp70 promoter region, however, cluster away from the transcription start site in the 12 species, but near it in natural populations of D. melanogaster. These results suggest that D. melanogaster heat-shock promoters are unique in terms of their interaction with transposable elements, and confirm that Hsp70 promoters are distinctive in TE insertions across Drosophila
Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-g production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses
- …