26 research outputs found

    The MHV68 M2 Protein Drives IL-10 Dependent B Cell Proliferation and Differentiation

    Get PDF
    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1α. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10−/− B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells—perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis—identifying a strategy that appears to be conserved between at least EBV and MHV68

    A Temporal Role Of Type I Interferon Signaling in CD8+ T Cell Maturation during Acute West Nile Virus Infection

    Get PDF
    A genetic absence of the common IFN- α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR-/- mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8+ T cell development requires type I IFN signaling. WNV infection experiments in BATF3-/- mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8+ T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8+ T cell response at a stage distinct from the initial priming event

    Macrophage and T cell produced IL-10 promotes viral chronicity

    Get PDF
    Chronic viral infections lead to CD8(+) T cell exhaustion, characterized by impaired cytokine secretion. Presence of the immune-regulatory cytokine IL-10 promotes chronicity of Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 infection, while absence of IL-10/IL-10R signaling early during infection results in viral clearance and higher percentages and numbers of antiviral, cytokine producing T cells. IL-10 is produced by several cell types during LCMV infection but it is currently unclear which cellular sources are responsible for induction of viral chronicity. Here, we demonstrate that although dendritic cells produce IL-10 and overall IL-10 mRNA levels decrease significantly in absence of CD11c(+) cells, absence of IL-10 produced by CD11c(+) cells failed to improve the LCMV-specific T cell response and control of LCMV infection. Similarly, NK cell specific IL-10 deficiency had no positive impact on the LCMV-specific T cell response or viral control, even though high percentages of NK cells produced IL-10 at early time points after infection. Interestingly, we found markedly improved T cell responses and clearance of normally chronic LCMV Clone 13 infection when either myeloid cells or T cells lacked IL-10 production and mice depleted of monocytes/macrophages or CD4(+) T cells exhibited reduced overall levels of IL-10 mRNA. These data suggest that the decision whether LCMV infection becomes chronic or can be cleared critically depends on early CD4(+) T cell and monocyte/macrophage produced IL-10

    Comparison of Efficacy of the Disease-Specific LOX1- and Constitutive Cytomegalovirus-Promoters in Expressing Interleukin 10 through Adeno-Associated Virus 2/8 Delivery in Atherosclerotic Mice

    No full text
    The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of “disease-specific promoters” has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2) using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery

    Extended IL10 Haplotypes and their Association with HIV Progression to AIDS

    No full text
    Interleukin-10 (IL-10) is a pleiotropic cytokine with both immunosuppressive and immunostimulatory functions. Its roles in infections and autoimmunity may have resulted in selective pressures on polymorphisms within the gene, leading to genomic coexistence of several semi-conserved haplotypes involved with diverse pathogen interactions during genomic evolution. Previous studies focused either exclusively on promoter haplotypes or on individual SNPs. We genotyped 21 single nucleotide polymorphisms in the human IL10 gene and examined this variation compared to other mammalian species sequences. Haplotype heterogeneity in human populations is centered around ‘classic’ ‘proximal’ promoter polymorphisms: −592, −819 and −1082. High-producing GCC haplotypes are by far the most numerous and diverse group, the intermediate IL-10 producing ACC-inclusive haplotypes seem to be related most closely to the ancestral haplotype, and the ATA-inclusive haplotypes cluster a separate branch with strong bootstrap support. We looked at associations of corresponding haplotypes with HIV progression. A haplotype trend regression confirmed that individuals carrying the low-producing ATA-inclusive haplotypes in European Americans progress to AIDS faster, and most likely explain the role of IL10. Our findings are consistent with the hypothesis that existing polymorphisms in this gene may reflect a balance of historic adaptive responses to autoimmune, infectious and other disease agents
    corecore