128 research outputs found

    Microbiology of the phyllosphere: a playground for testing ecological concepts

    Get PDF
    Many concepts and theories in ecology are highly debated, because it is often difficult to design decisive tests with sufficient replicates. Examples include biodiversity theories, succession concepts, invasion theories, coexistence theories, and concepts of life history strategies. Microbiological tests of ecological concepts are rapidly accumulating, but have yet to tap into their full potential to complement traditional macroecological theories. Taking the example of microbial communities on leaf surfaces (i.e. the phyllosphere), we show that most explorations of ecological concepts in this field of microbiology focus on autecology and population ecology, while community ecology remains understudied. Notable exceptions are first tests of the island biogeography theory and of biodiversity theories. Here, the phyllosphere provides the unique opportunity to set up replicated experiments, potentially moving fields such as biogeography, macroecology, and landscape ecology beyond theoretical and observational evidence. Future approaches should take advantage of the great range of spatial scales offered by the leaf surface by iteratively linking laboratory experiments with spatial simulation models

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo

    Get PDF
    Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy

    Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei.

    Get PDF
    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3- CD14+ monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis

    Co-habiting amphibian species harbor unique skin bacterial communities in wild populations

    Get PDF
    Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens

    Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia

    Get PDF
    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not “emptied” the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of wildlife for food, thereby providing a conservative assessment of game depletion. Given this ‘best-case’ camera trap and interview-based evidence for hunting depletion, regions with higher human population densities, external trade in wildlife and limited access to alternative protein will likely exhibit more severe depletion
    corecore