1,086 research outputs found

    The relationship between lower body stiffness and injury incidence in female netballers

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. The aim of this study was to provide contemporary information on injury rates in an elite and sub-elite netball population and to explore the relationship between lower body stiffness and lower body injuries. One elite and two sub-elite teams of female netballers (n = 29) performed the vertical hop test to assess active lower body stiffness (Kvert) and myometry to assess quasi-static stiffness. Lower body injuries were monitored via self-reporting and liaison with physiotherapists. Twelve lower body non-contact injuries were sustained by 10 players, equating to 11.29 lower body injuries per 1,000 exposure hours. The most commonly injured sites were the calf (33%) and ankle (25%). No significant differences between Kvert of injured and non-injured players were reported, however, injured elite players recorded significantly higher season mean quasi-static stiffness in the soleus (p = 0.037) and Achilles (p = 0.004) than non-injured elite players. Elite and sub-elite netball players recorded a higher injury incidence than previous reports of injuries in recreational netballers. Within the constraints of the study, relatively high stiffness of the soleus and Achilles appears to be related to lower body non-contact injury incidence in female netballers, particularly at the elite level. These results provide a basis for development of injury prevention strategies

    Regulation of food intake by astrocytes in the brainstem dorsal vagal complex

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordA role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high‐fat chow for 12 hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial‐fibrillary acidic protein (GFAP)‐immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno‐associated viral (AAV) vector (AAV‐GFAP‐hM3Dq_mCherry). Chemogenetic activation with clozapine‐N‐oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark‐phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq‐activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV‐GFAP‐mCherry expressing control mice. DREADD‐mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c‐FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.Diabetes UKMedical Research Council (MRC

    Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo.

    Get PDF
    In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment

    Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized controlled trial.

    Full text link
    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities

    C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins

    Get PDF
    An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus, expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration

    Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation

    Get PDF
    Aim: To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. Methods: Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer’s solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a “pithed” DAPM which has no brainstem or spinal cord control. Results: Functional micturition cycles were observed in response to bladder filling. During each void, the bladder showed strong contractions and the external urethral sphincter (EUS) showed bursting activity. Both the frequency and amplitude of non-voiding contractions (NVCs) in DAPM and putative micromotions (pMM) in pithed DAPM increased with bladder filling. Vasopressin (>400 pM) caused dyssynergy of the LUT resulting in retention in DAPM as it increased tonic EUS activity and basal bladder pressure in a dose-dependent manner (basal pressure increase also noted in pithed DAPM). Both neuromuscular blockade (vecuronium) and autonomic ganglion blockade (hexamethonium), initially caused incomplete voiding, and both drugs eventually stopped voiding in DAPM. Intravesical acetic acid (0.2%) decreased the micturition interval. Recordings from the pelvic nerve in the pithed DAPM showed bladder distention-induced activity in the non-noxious range which was associated with pMM. Conclusions: This study demonstrates the utility of the DAPM which allows a detailed characterization of LUT function in mice

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    Interpreting and acting upon home blood pressure readings: A qualitative study

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 Vasileiou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Recent guidelines recognize the importance of home blood pressure monitoring (HBPM) as an adjunct to clinical measurements. We explored how people who have purchased and use a home blood pressure (BP) monitor make sense of, and act upon, readings and how they communicate with their doctor about the practice of home monitoring. Methods: A qualitative study was designed and participants were purposively recruited from several areas in England, UK. Semi-structured in-depth interviews were conducted with 18 users of home BP monitors. The transcribed data were thematically analysed. Results: Interpretation of home BP readings is complex, and is often characterised by uncertainty. People seek to assess value normality using ‘rules of thumb’, and often aim to identify the potential causes of the readings. This is done by drawing on lay models of BP function and by contextualising the readings to personal circumstances. Based on the perceived causes of the problematic readings, actions are initiated, mostly relating to changes in daily routines. Contacting the doctor was more likely when the problematic readings persisted and could not be easily explained, or when participants did not succeed in regulating their BP through their other interventions. Most users had notified their doctor of the practice of home monitoring, but medical involvement varied, with some participants reporting disinterest or reservations by doctors. Conclusions: Involvement from doctors can help people overcome difficulties and resolve uncertainties around the interpretation of home readings, and ensure that the rules of thumb are appropriate. Home monitoring can be used to strengthen the patient-clinician relationship
    • 

    corecore