137 research outputs found

    Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough

    Get PDF
    Metapopulation rescue effects are thought to be key to the persistence of many acute immunizing infections. Yet the enhancement of persistence through spatial coupling has not been previously quantified. Here we estimate the metapopulation rescue effects for four childhood infections using global WHO reported incidence data by comparing persistence on island countries vs all other countries, while controlling for key variables such as vaccine cover, birth rates and economic development. The relative risk of extinction on islands is significantly higher, and approximately double the risk of extinction in mainland countries. Furthermore, as may be expected, infections with longer infectious periods tend to have the strongest metapopulation rescue effects. Our results quantitate the notion that demography and local community size controls disease persistence

    Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study

    Get PDF
    BACKGROUND: The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures-including novel digital tracing approaches and less intensive physical distancing-might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence. METHODS: For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40 162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies. RESULTS: We estimated that combined isolation and tracing strategies would reduce transmission more than mass testing or self-isolation alone: mean transmission reduction of 2% for mass random testing of 5% of the population each week, 29% for self-isolation alone of symptomatic cases within the household, 35% for self-isolation alone outside the household, 37% for self-isolation plus household quarantine, 64% for self-isolation and household quarantine with the addition of manual contact tracing of all contacts, 57% with the addition of manual tracing of acquaintances only, and 47% with the addition of app-based tracing only. If limits were placed on gatherings outside of home, school, or work, then manual contact tracing of acquaintances alone could have an effect on transmission reduction similar to that of detailed contact tracing. In a scenario where 1000 new symptomatic cases that met the definition to trigger contact tracing occurred per day, we estimated that, in most contact tracing strategies, 15 000-41 000 contacts would be newly quarantined each day. INTERPRETATION: Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimated that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number lower than 1 in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control of severe acute respiratory syndrome coronavirus 2 transmission. FUNDING: Wellcome Trust, UK Engineering and Physical Sciences Research Council, European Commission, Royal Society, Medical Research Council

    The dynamics of measles in sub-Saharan Africa.

    Get PDF
    Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur

    School's Out: Seasonal Variation in the Movement Patterns of School Children.

    Get PDF
    School children are core groups in the transmission of many common infectious diseases, and are likely to play a key role in the spatial dispersal of disease across multiple scales. However, there is currently little detailed information about the spatial movements of this epidemiologically important age group. To address this knowledge gap, we collaborated with eight secondary schools to conduct a survey of movement patterns of school pupils in primary and secondary schools in the United Kingdom. We found evidence of a significant change in behaviour between term time and holidays, with term time weekdays characterised by predominately local movements, and holidays seeing much broader variation in travel patterns. Studies that use mathematical models to examine epidemic transmission and control often use adult commuting data as a proxy for population movements. We show that while these data share some features with the movement patterns reported by school children, there are some crucial differences between the movements of children and adult commuters during both term-time and holidays.AJK was supported by the Medical Research Council (fellowship MR/K021524/1, http://www.mrc.ac.uk/) and the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health (http://www.fic.nih.gov/about/staff/pages​/epidemiology-population.aspx#rapidd). AJKC was supported by the Alborada Trust (http://www.alboradatrust.com/). KTDE was supported by the NIHR (CDF-2011-04- 019, http://www.nihr.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version. It was first published by PLOS at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128070#

    Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains

    Get PDF
    The recently discovered CDGSH iron-sulfur domains (CISDs) are classified into seven major types with a wide distribution throughout the three domains of life. The type 1 protein mitoNEET has been shown to fold into a dimer with the signature CDGSH motif binding to a [2Fe-2S] cluster. However, the structures of all other types of CISDs were unknown. Here we report the crystal structures of type 3, 4, and 6 CISDs determined at 1.5 Å, 1.8 Å and 1.15 Å resolution, respectively. The type 3 and 4 CISD each contain one CDGSH motif and adopt a dimeric structure. Although similar to each other, the two structures have permutated topologies, and both are distinct from the type 1 structure. The type 6 CISD contains tandem CDGSH motifs and adopts a monomeric structure with an internal pseudo dyad symmetry. All currently known CISD structures share dual iron-sulfur binding modules and a β-sandwich for either intermolecular or intramolecular dimerization. The iron-sulfur binding module, the β-strand N-terminal to the module and a proline motif are conserved among different type structures, but the dimerization module and the interface and orientation between the two iron-sulfur binding modules are divergent. Sequence analysis further shows resemblance between CISD types 4 and 7 and between 1 and 2. Our findings suggest that all CISDs share common ancestry and diverged into three primary folds with a characteristic phylogenetic distribution: a eukaryote-specific fold adopted by types 1 and 2 proteins, a prokaryote-specific fold adopted by types 3, 4 and 7 proteins, and a tandem-motif fold adopted by types 5 and 6 proteins. Our comprehensive structural, sequential and phylogenetic analysis provides significant insight into the assembly principles and evolutionary relationship of CISDs

    Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza

    Get PDF
    Patterns of social mixing are key determinants of epidemic spread. Here we present the results of an internet-based social contact survey completed by a cohort of participants over 9,000 times between July 2009 and March 2010, during the 2009 H1N1v influenza epidemic. We quantify the changes in social contact patterns over time, finding that school children make 40% fewer contacts during holiday periods than during term time. We use these dynamically varying contact patterns to parameterise an age-structured model of influenza spread, capturing well the observed patterns of incidence; the changing contact patterns resulted in a fall of approximately 35% in the reproduction number of influenza during the holidays. This work illustrates the importance of including changing mixing patterns in epidemic models. We conclude that changes in contact patterns explain changes in disease incidence, and that the timing of school terms drove the 2009 H1N1v epidemic in the UK. Changes in social mixing patterns can be usefully measured through simple internet-based surveys

    Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    Get PDF
    Background: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD\u2085\u2080 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably \u394pyrB and \u394recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD\u2085\u2080 of >10\ub3 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD\u2085\u2080 of 6510\u2077 CFU. Conclusions/Significance: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.Peer reviewed: YesNRC publication: Ye

    Positive selection inhibits gene mobilization and transfer in soil bacterial communities

    Get PDF
    Horizontal gene transfer (HGT) between bacterial lineages is a fundamental evolutionary process that accelerates adaptation. Sequence analyses show that conjugative plasmids are principal agents of HGT in natural communities. However, we lack understanding of how the ecology of bacterial communities and their environments affect the dynamics of plasmid-mediated gene mobilization and transfer. Here we show, in simple experimental soil bacterial communities containing a conjugative mercury resistance plasmid, the repeated, independent mobilization of transposon-borne genes from chromosome to plasmid, plasmid to chromosome and, in the absence of mercury selection, interspecific gene transfers from the chromosome of one species to the other via the plasmid. By reducing conjugation, positive selection for plasmid-encoded traits, like mercury resistance, can consequently inhibit HGT. Our results suggest that interspecific plasmid-mediated gene mobilization is most likely to occur in environments where plasmids are infectious, parasitic elements rather than those where plasmids are positively selected, beneficial elements

    Surveillance of Gram-negative bacteria: impact of variation in current European laboratory reporting practice on apparent multidrug resistance prevalence in paediatric bloodstream isolates.

    Get PDF
    This study evaluates whether estimated multidrug resistance (MDR) levels are dependent on the design of the surveillance system when using routine microbiological data. We used antimicrobial resistance data from the Antibiotic Resistance and Prescribing in European Children (ARPEC) project. The MDR status of bloodstream isolates of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was defined using European Centre for Disease Prevention and Control (ECDC)-endorsed standardised algorithms (non-susceptible to at least one agent in three or more antibiotic classes). Assessment of MDR status was based on specified combinations of antibiotic classes reportable as part of routine surveillance activities. The agreement between MDR status and resistance to specific pathogen-antibiotic class combinations (PACCs) was assessed. Based on all available antibiotic susceptibility testing, the proportion of MDR isolates was 31% for E. coli, 30% for K. pneumoniae and 28% for P. aeruginosa isolates. These proportions fell to 9, 14 and 25%, respectively, when based only on classes collected by current ECDC surveillance methods. Resistance percentages for specific PACCs were lower compared with MDR percentages, except for P. aeruginosa. Accordingly, MDR detection based on these had low sensitivity for E. coli (2-41%) and K. pneumoniae (21-85%). Estimates of MDR percentages for Gram-negative bacteria are strongly influenced by the antibiotic classes reported. When a complete set of results requested by the algorithm is not available, inclusion of classes frequently tested as part of routine clinical care greatly improves the detection of MDR. Resistance to individual PACCs should not be considered reflective of MDR percentages in Enterobacteriaceae
    • …
    corecore